六年级上册数学知识点总结大全
读书不是为了考试,本来考试是一件正确的事情,它是用来检查我们对学习过的知识是否懂了,懂了多少 多深分数只是反映了我们对学过知识的掌握程度,下面我给大家分享一些六年级数学知识点,希望能够帮助大家! 六年级上册数学知识点大全六年级上册数学知识总结1 圆 一、圆的特征 1、圆是平面内封闭曲线围成的平面图形。 2、圆的特征:外形美观,易滚动。 3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。 圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。 半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。 直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。 同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2 4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。 同心圆:圆心重合、半径不等的两个圆叫做同心圆。 5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。 有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。 有二条对称轴的图形:长方形 有三条对称轴的图形:等边三角形 有四条对称轴的图形:正方形 有无条对称轴的图形:圆,圆环 6、画圆 (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。 二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。 1、圆的周长总是直径的三倍多一些。 2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。 即:圆周率π = 周长÷直径≈3.14 所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr 圆周率π是一个无限不循环小数,3.14是近似值。 3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。 4、半圆周长=圆周长一半+直径= πr+d 三、圆的面积s 1、圆面积公式的推导 如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。 圆的半径=长方形的宽 圆的周长的一半=长方形的长 长方形面积=长×宽 所以:圆的面积=圆的周长的一半(πr)×圆的半径(r) S圆 =πr×r=πr2 2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。 周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。 3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。 4、环形面积 =大圆–小圆=πR2-πr2 扇形面积=πr2×n÷360(n表示扇形圆心角的度数) 5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。 一个圆的半径增加a厘米,周长就增加2πa厘米。 一个圆的直径增加b厘米,周长就增加πb厘米。 6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。 7、常用数据 π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 六年级上册数学知识总结2 比 比:两个数相除也叫两个数的比 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。 连比如:3:4:5读作:3比4比5 2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。 例:12∶20= =12÷20= =0.6 12∶20读作:12比20 区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。 比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。 4、化简比:化简之后结果还是一个比,不是一个数。 (1)、用比的前项和后项同时除以它们的最大公约数。 (2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。 (3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。 5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。 6、比和除法、分数的区别: 除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算 分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是一个数 比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系 商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。 分数除法和比的应用 1、已知单位“1”的量用乘法。 2、未知单位“1”的量用除法。 3、分数应用题基本数量关系(把分数看成比) (1)甲是乙的几分之几? 甲=乙×几分之几 乙=甲÷几分之几 几分之几=甲÷乙 (2)甲比乙多(少)几分之几? 4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。 5、画线段图: (1)找出单位“1”的量,先画出单位“1”,标出已知和未知。 (2)分析数量关系。(3)找等量关系。(4)列方程。 两个量的关系画两条线段图,部分和整体的关系画一条线段图。 六年级上册数学知识总结3 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 “分数乘整数”指的是第二个因数必须是整数,不能是分数。 2、一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。 (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。 (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c 一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。 (四)分数乘法混合运算 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c (五)倒数的意义:乘积为1的两个数互为倒数。 1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数) 2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。 3、求倒数的方法: ①求分数的倒数:交换分子、分母的位置。 ②求整数的倒数:整数分之1。 ③求带分数的倒数:先化成假分数,再求倒数。 ④求小数的倒数:先化成分数再求倒数。 4、1的倒数是它本身,因为1×1=1 0没有倒数,因为任何数乘0积都是0,且0不能作分母。 5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。 假分数的倒数小于或等于1。带分数的倒数小于1。 (六)分数乘法应用题——用分数乘法解决问题 1、求一个数的几分之几是多少?(用乘法) 已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。 2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。 3、什么是速度? 速度是单位时间内行驶的路程。 速度=路程÷时间 时间=路程÷速度 路程=速度×时间 单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。 4、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙 少:(乙-甲)÷乙 六年级上册数学知识总结4 百分数(一) 一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。 注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。 1、百分数和分数的区别和联系: (1)联系:都可以用来表示两个量的倍比关系。 (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。 注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。 2、小数、分数、百分数之间的互化 (1)百分数化小数:小数点向左移动两位,去掉“%”。 (2)小数化百分数:小数点向右移动两位,添上“%”。 (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。 (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。 (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。 (6)分数化小数:分子除以分母。 二、百分数应用题 1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。 2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。 求甲比乙多百分之几:(甲-乙)÷乙 求乙比甲少百分之几:(甲-乙)÷甲 3、求一个数的百分之几是多少。一个数(单位“1”)×百分率 4、已知一个数的百分之几是多少,求这个数。 部分量÷百分率=一个数(单位“1”) 5、折扣、打折的意义:几折就是十分之几也就是百分之几十 折扣、成数=几分之几、百分之几、小数 八折=八成=十分之八=百分之八十=0.8 八五折=八成五=十分之八点五=百分之八十五=0.85 五折=五成=十分之五=百分之五十=0.5=半价 6、利率 (1)存入银行的钱叫做本金。 (2)取款时银行多支付的钱叫做利息。 (3)利息与本金的比值叫做利率。 利息=本金×利率×时间 税后利息=利息-利息的应纳税额=利息-利息×5% 注:国债和教育储蓄的利息不纳税 7、百分数应用题型分类 (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几 (2)求甲比乙多百分之几——(甲-乙)÷乙×100% (3)求甲比乙少百分之几——(乙-甲)÷乙×100% 六年级上册数学知识总结5 扇形统计图的意义 1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。 2、常用统计图的优点: (1)条形统计图直观显示每个数量的多少。 (2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。 (3)扇形统计图直观显示部分和总量的关系。 数学广角--数与形 2+4+6+8+10+12+14+16+18+20=(110) 规律:从2开始的n个连续偶数的和等于n×(n+1)。 10×(10+1)=10×11=110 位置与方向(二) 1、什么是数对? 数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。 数对的作用:确定一个点的位置。经度和纬度就是这个原理。 2、确定物体位置的方法: (1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。 描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。 位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。 相对位置:东--西;南--北;南偏东--北偏西。 六年级上册数学知识点总结相关文章: ★六年级上册数学知识点整理归纳 ★六年级数学上册知识点总结 ★六年级数学期末复习知识点汇总 ★六年级上册数学知识点 ★六年级数学上册《百分数》知识点总结 ★六年级上册数学课本知识点归纳 ★六年级数学上册知识点复习 ★小学六年级数学学习方法和技巧大全 ★六年级数学上册知识人教版 ★小学六年级数学知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();
六年级数学上册重点知识点总结
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些六年级数学的知识点,希望对大家有所帮助。 六年级毕业考试数学重难知识点:几何面积 基本思路: 在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。 常用方法: 1.连辅助线方法 2.利用等底等高的两个三角形面积相等。 3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。 4.利用特殊规律 ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积) ②梯形对角线连线后,两腰部分面积相等。 ③圆的面积占外接正方形面积的78.5%。 六年级数学知识点 1、什么是图形的周长? 围成一个图形所有边长的总和就是这个图形的周长。 2、什么是面积? 物体的表面或围成的平面图形的大小叫做他们的面积。 3、加法各部分的关系: 一个加数=和-另一个加数 4、减法各部分的关系: 减数=被减数-差 被减数=减数+差 5、乘法各部分之间的关系: 一个因数=积÷另一个因数 6、除法各部分之间的关系: 除数=被除数÷商 被除数=商×除数 7、角 (1)什么是角? 从一点引出两条射线所组成的图形叫做角。 (2)什么是角的顶点? 围成角的端点叫顶点。 (3)什么是角的边? 围成角的射线叫角的边。 (4)什么是直角? 度数为90°的角是直角。 (5)什么是平角? 角的两条边成一条直线,这样的角叫平角。 (6)什么是锐角? 小于90°的角是锐角。 (7)什么是钝角? 大于90°而小于180°的角是钝角。 (8)什么是周角? 一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°. 六年级数学下册单元知识点:统计图 (一)意义:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。 (二)分类 1、条形统计图 用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 制作条形统计图的一般步骤: (1)根据图纸的大小,画出两条互相垂直的射线。 (2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。 (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。 (4)按照数据的大小画出长短不同的直条,并注明数量。 2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 制作折线统计图的一般步骤: (1)根据图纸的大小,画出两条互相垂直的射线。 (2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。 (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。 (4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。 3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。 制扇形统计图的一般步骤: (1)先算出各部分数量占总量的百分之几。 (2)再算出表示各部分数量的扇形的圆心角度数。 (3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。 (4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。 六年级数学下册知识点:圆柱和圆锥 1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。 2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。 3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。 4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。 5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。 6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。 7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。 8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。 进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。 9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。 10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离) 11.把圆锥的侧面展开得到一个扇形。 12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。 13.常见的圆柱圆锥解决问题: ①压路机压过路面面积(求侧面积); ②压路机压过路面长度(求底面周长); ③水桶铁皮(求侧面积和一个底面积); ④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。 六年级数学上册重点知识点总结相关文章: ★六年级上册数学知识点整理归纳 ★六年级数学上册知识点总结 ★六年级数学上册知识点复习 ★六年级数学上册《百分数》知识点总结 ★六年级上册数学知识点总结 ★六年级数学期末复习知识点汇总 ★六年级上册数学课本知识点归纳 ★六年级数学上册知识点复习资料 ★人教版六年级数学的知识点总结 ★六年级上册数学知识点 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();
人教版小学六年级数学上册概念都是有哪些
你要的资料,包括很多公式,知识点,我们都整理成集,分享给你,希望对你有帮助。 《小学阶段语文、英语、数字、音乐、美术、体育、自然、科学等》百度网盘资源大全 链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ ?pwd=1234 提取码:1234 对于小学阶段所涉及到的各科各类资料,我拍改们都收集、归类并定期更新。欢迎有需求的家长、老师收藏。
人教版小学六年级数学上册概念如下: 第一单元位置: 1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。 2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。 3、平移方法:左右平移,列变行不变;上下平移,行变列不变。 第二单元分数乘法: 1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。 2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。 4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 5、乘积是1的两个数叫互为倒数。 6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 7、一个数(0除外)乘以一个真分数,所得的积小于它本身。 8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 9、一个数(0除外)乘以一个带分数,所得的积大于它本身。 第三单元分数除法: 1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。 2、分数除以整数(0除外),等于分数乘这个整数的倒数。 3、整数除以分数等于整数乘以这个分数的倒数。 4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 5、两个数相除又叫做两个数的比。 6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。 8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 11、一个数(0除外)除以一个真分数,所得的商大于它本身。 12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 13、一个数(0除外)除以一个带分数,所得的商小于它本身。 第四单元圆 1、圆的定义:平面上的一种曲线图形。 2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。 3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。 4、圆心确定圆的位置,半径确定圆的大小。 5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 6、在同一个圆内,所有的半径都相等,所有的直径都相等。 7、在同一个圆内,有无数条半径,有无数条直径。 8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。 9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。 10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。 11、圆的周长公式:C=πd或C=2πr 12、圆的面积:圆所占面积的大小叫圆的面积。 13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。 16、环形的周长=外圆周长+内圆周长。 17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d 或 C=πr+2r 18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米; 21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。 23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。 24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 26、只有2条对称轴的图形是:长方形。 27、只有3条对称轴的图形是:等边三角形。 28、只有4条对称轴的图形是:正方形。 29、有无数条对称轴的图形是:圆、圆环。 30、直径所在的直线是圆的对称轴。 第五单元百分数 1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。 3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。 5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。 6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 7、百分率公式: 合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100% 出勤率=出勤人数÷总人数100% 8、应纳税额:缴纳的税款叫应纳税额。 9、应纳税额的计算:应纳税额=各种收入×税率。 10、本金:存入银行的钱叫做本金。 11、利息:取款时银行多支付的钱叫做利息。 12、利率:利息与本金的比值叫做利率。 13、国债利息的计算公式:利息=本金×利率×时间。 13、本息:本金与利息的总和叫做本息。 单位换算: 1、长度单位换算 1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 2、面积单位换算 1平方千米=100公顷1公顷10000平方米1平方米=100平方分米 1平方分米=100平方厘米 3、体(容)积单位换算 1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米 1立方厘米=1毫升 4、重量单位换算:1吨=1000千克1千克=1000克 运算定律: 1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c) 3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c) 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc 6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c) 7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c) 扩展资料: 小学六年级数学学习方法 1、抓住课堂 平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。 2、高质量完成作业 不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。 3、勤思考,多提问 对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。 4、总结比较,理清思绪 要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。 要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。 5、有选择地做课外练习 课余时间并不充足,因此在做课外练习时要少而精,多反思
第四单元,第五单元,第一单元
单元一位置 1.找位置:先列后行。格式为:(列,行)。例如:(a,b)。2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。3.平移方法:左右平移,列变行不变;上下平移,行变列不变。 ***单元二分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。例如: ++=×3(b0)2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。例如:a×(×a)=(为了计算简便,能约分的要先约分,然后再乘。)【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。例如:×n=++、、、、、、(b0)②、整数乘以分数,可以看作是求整数的几分之几是多少。例如: n×的意义是:表示求n的是多少。4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。例如:× = (b、d0) 【注:为了计算简便,可以先约分再乘】5.乘积是1的两个数叫互为倒数。例如:×=1,那和就是互为倒数。6.求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。 0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。9.一个数(0除外)乘以一个带分数,所得的积大于它本身。10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。 ***单元三分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如:表示:已知两个数的积是与其中一个因数,求另一个因数是多少。2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。例如:÷c=×(a、c0)②整数除以分数等于整数乘以这个分数的倒数。例如:c÷=c×(a0)3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。4.两个数相除又叫做两个数的比。5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:a:b=(a是比的前项;b是比的后项;是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。例如::=÷(b、d0)8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。例如:a:b=a÷b=(b0)。9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 例如:a:b=a÷b=(b0)。10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。例如:a:b=a:b=(b0)11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。③、一个数(0除外)除以一个带分数,所得的商小于它本身。 单元四 圆1.圆的定义:平面上的一种曲线图形。例如:“O”。2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.例如:“⊙”3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。例如:“⊙”4.圆心确定圆的位置,半径确定圆的大小。5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。例如:“⊙”6.①在同一个圆内,所有的半径都相等,所有的直径都相等。②在同一个圆内,有无数条半径,有无数条直径。③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r或r=d÷27.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。9.圆的周长公式:C=πd 或C=2πr10、圆的面积:圆所占面积的大小叫圆的面积。S=π×r×r=πr²11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。(其中R=r+环的宽度.)14.环形的周长=外圆周长+内圆周长15.半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷ 2+d 或 C=πr+2r16.半圆面积=圆的面积÷2 公式为:S=πr²÷21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。18.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。21.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。22.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。②只有2条对称轴的图形是:长方形③只有3条对称轴的图形是:等边三角形④只有4条对称轴的图形是:正方形;⑤有无数条对称轴的图形是:圆、圆环。23.直径所在的直线是圆的对称轴。 单元五 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。2.百分数的意义:表示一个数是另一个数的百分之几。例如:25%的意义:表示一个数是另一个数的25%。3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。6.百分率公式:合格率= 合格人数÷总人数100%发芽率=发芽数量÷总数量100%出勤率= 出勤人数÷总人数100%7.应纳税额:缴纳的税款叫应纳税额。9.应纳税额的计算:应纳税额=各种收入×税率10.本金:存入银行的钱叫做本金。11.利息:取款时银行多支付的钱叫做利息。12.利率:利息与本金的比值叫做利率。13.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。 ***单位换算:1、长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷10000平方米 1平方米=100平方分米1平方分米=100平方厘米3、体(容)积单位换算1立方米=1000立方分米 1立方分米=1升 1立方分米=1000立方厘米1立方厘米=1毫升4、重量单位换算:1吨=1000千克1千克=1000克 ***运算定律:1.加法交换律:两数相加交换加数的位置,和不变。 a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。 a÷b÷c=a÷(b×c)
人教版小学六年级数学上册概念如下: 第一单元位置: 1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。 2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。 3、平移方法:左右平移,列变行不变;上下平移,行变列不变。 第二单元分数乘法: 1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。 2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。 4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 5、乘积是1的两个数叫互为倒数。 6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 7、一个数(0除外)乘以一个真分数,所得的积小于它本身。 8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 9、一个数(0除外)乘以一个带分数,所得的积大于它本身。 第三单元分数除法: 1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。 2、分数除以整数(0除外),等于分数乘这个整数的倒数。 3、整数除以分数等于整数乘以这个分数的倒数。 4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 5、两个数相除又叫做两个数的比。 6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。 8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 11、一个数(0除外)除以一个真分数,所得的商大于它本身。 12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 13、一个数(0除外)除以一个带分数,所得的商小于它本身。 第四单元圆 1、圆的定义:平面上的一种曲线图形。 2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。 3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。 4、圆心确定圆的位置,半径确定圆的大小。 5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 6、在同一个圆内,所有的半径都相等,所有的直径都相等。 7、在同一个圆内,有无数条半径,有无数条直径。 8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。 9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。 10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。 11、圆的周长公式:C=πd或C=2πr 12、圆的面积:圆所占面积的大小叫圆的面积。 13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。 16、环形的周长=外圆周长+内圆周长。 17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d 或 C=πr+2r 18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米; 21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。 23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。 24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 26、只有2条对称轴的图形是:长方形。 27、只有3条对称轴的图形是:等边三角形。 28、只有4条对称轴的图形是:正方形。 29、有无数条对称轴的图形是:圆、圆环。 30、直径所在的直线是圆的对称轴。 第五单元百分数 1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。 3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。 5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。 6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 7、百分率公式: 合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100% 出勤率=出勤人数÷总人数100% 8、应纳税额:缴纳的税款叫应纳税额。 9、应纳税额的计算:应纳税额=各种收入×税率。 10、本金:存入银行的钱叫做本金。 11、利息:取款时银行多支付的钱叫做利息。 12、利率:利息与本金的比值叫做利率。 13、国债利息的计算公式:利息=本金×利率×时间。 13、本息:本金与利息的总和叫做本息。 单位换算: 1、长度单位换算 1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 2、面积单位换算 1平方千米=100公顷1公顷10000平方米1平方米=100平方分米 1平方分米=100平方厘米 3、体(容)积单位换算 1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米 1立方厘米=1毫升 4、重量单位换算:1吨=1000千克1千克=1000克 运算定律: 1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c) 3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c) 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc 6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c) 7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c) 扩展资料: 小学六年级数学学习方法 1、抓住课堂 平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。 2、高质量完成作业 不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。 3、勤思考,多提问 对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。 4、总结比较,理清思绪 要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。 要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。 5、有选择地做课外练习 课余时间并不充足,因此在做课外练习时要少而精,多反思
第四单元,第五单元,第一单元
单元一位置 1.找位置:先列后行。格式为:(列,行)。例如:(a,b)。2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。3.平移方法:左右平移,列变行不变;上下平移,行变列不变。 ***单元二分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。例如: ++=×3(b0)2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。例如:a×(×a)=(为了计算简便,能约分的要先约分,然后再乘。)【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。例如:×n=++、、、、、、(b0)②、整数乘以分数,可以看作是求整数的几分之几是多少。例如: n×的意义是:表示求n的是多少。4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。例如:× = (b、d0) 【注:为了计算简便,可以先约分再乘】5.乘积是1的两个数叫互为倒数。例如:×=1,那和就是互为倒数。6.求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。 0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。9.一个数(0除外)乘以一个带分数,所得的积大于它本身。10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。 ***单元三分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如:表示:已知两个数的积是与其中一个因数,求另一个因数是多少。2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。例如:÷c=×(a、c0)②整数除以分数等于整数乘以这个分数的倒数。例如:c÷=c×(a0)3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。4.两个数相除又叫做两个数的比。5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:a:b=(a是比的前项;b是比的后项;是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。例如::=÷(b、d0)8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。例如:a:b=a÷b=(b0)。9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 例如:a:b=a÷b=(b0)。10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。例如:a:b=a:b=(b0)11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。③、一个数(0除外)除以一个带分数,所得的商小于它本身。 单元四 圆1.圆的定义:平面上的一种曲线图形。例如:“O”。2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.例如:“⊙”3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。例如:“⊙”4.圆心确定圆的位置,半径确定圆的大小。5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。例如:“⊙”6.①在同一个圆内,所有的半径都相等,所有的直径都相等。②在同一个圆内,有无数条半径,有无数条直径。③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r或r=d÷27.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。9.圆的周长公式:C=πd 或C=2πr10、圆的面积:圆所占面积的大小叫圆的面积。S=π×r×r=πr²11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。(其中R=r+环的宽度.)14.环形的周长=外圆周长+内圆周长15.半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷ 2+d 或 C=πr+2r16.半圆面积=圆的面积÷2 公式为:S=πr²÷21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。18.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。21.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。22.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。②只有2条对称轴的图形是:长方形③只有3条对称轴的图形是:等边三角形④只有4条对称轴的图形是:正方形;⑤有无数条对称轴的图形是:圆、圆环。23.直径所在的直线是圆的对称轴。 单元五 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。2.百分数的意义:表示一个数是另一个数的百分之几。例如:25%的意义:表示一个数是另一个数的25%。3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。6.百分率公式:合格率= 合格人数÷总人数100%发芽率=发芽数量÷总数量100%出勤率= 出勤人数÷总人数100%7.应纳税额:缴纳的税款叫应纳税额。9.应纳税额的计算:应纳税额=各种收入×税率10.本金:存入银行的钱叫做本金。11.利息:取款时银行多支付的钱叫做利息。12.利率:利息与本金的比值叫做利率。13.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。 ***单位换算:1、长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷10000平方米 1平方米=100平方分米1平方分米=100平方厘米3、体(容)积单位换算1立方米=1000立方分米 1立方分米=1升 1立方分米=1000立方厘米1立方厘米=1毫升4、重量单位换算:1吨=1000千克1千克=1000克 ***运算定律:1.加法交换律:两数相加交换加数的位置,和不变。 a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。 a÷b÷c=a÷(b×c)
求人教版小学六年级上册数学书 电子版下载地址?
《6.人教版小学数学六年级上册.rar》百度网盘资源免费下载 链接:https://pan.baidu.com/s/1o9OKMADfa_QUP3lLgZPM7A 提取码:dr26 |统编六年级语文上册教师资源包|统编六年级语文上册积累拓展资源|统编版六年级语文上册一课一练|统编版六年级语文上册教案及反思(表格式)(3)|统编版六年级语文上册教案及反思(2)|统编版六年级语文上册教案及反思(1)|统编版六年级语文上册单元知识小结|六年级上册语文素材-第8单元知识小结(部编版).doc|六年级上册语文素材-第7单元知识小结(部编版).doc|六年级上册语文素材-第6单元知识小结(部编版).doc|六年级上册语文素材-第5单元知识小结(部编版).doc|六年级上册语文素材-第4单元知识小结(部编版).doc|六年级上册语文素材-第3单元知识小结(部编版).doc|六年级上册语文素材-第2单元知识小结(部编版).doc
人教版 小学六年级数学上册 胡青清 视频 百度网盘 链接: https://pan.baidu.com/s/1m3_-Xk-mD3Md6G4c9ag-gg 提取码: a31c 复制这段内容后打开百度网盘手机App,操作更方便哦 若资源有问题欢迎追问~
需要电子版人教版六年级上册数学书的朋友可以去这这里看看: http://www.chinaschool.net/ebook-view-categoryId-1119.html 。人教版一至六年级上册数学书电子版可上师库网查找,搜搜 www.soso.com 搜搜一下即可
人教版 小学六年级数学上册 胡青清 视频 百度网盘 链接: https://pan.baidu.com/s/1m3_-Xk-mD3Md6G4c9ag-gg 提取码: a31c 复制这段内容后打开百度网盘手机App,操作更方便哦 若资源有问题欢迎追问~
需要电子版人教版六年级上册数学书的朋友可以去这这里看看: http://www.chinaschool.net/ebook-view-categoryId-1119.html 。人教版一至六年级上册数学书电子版可上师库网查找,搜搜 www.soso.com 搜搜一下即可
六年级数学单元知识点
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些六年级数学的知识点,希望对大家有所帮助。 六年级毕业考试数学重难知识点:不定方程 一次不定方程: 含有两个未知数的一个方程,叫做二元一次方程,由于它的解不,所以也叫做二元一次不定方程; 常规方法: 观察法、试验法、枚举法; 多元不定方程: 含有三个未知数的方程叫三元一次方程,它的解也不 多元不定方程解法: 根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可 涉及知识点: 列方程、数的整除、大小比较 解不定方程的步骤: 1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案 技巧总结: A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数 B、消元技巧:消掉范围大的未知数。 六年级数学考试知识点 (一)笔算两位数加法,要记三条 1、相同数位对齐; 2、从个位加起; 3、个位满10向十位进1。 (二)笔算两位数减法,要记三条 1、相同数位对齐; 2、从个位减起; 3、个位不够减从十位退1,在个位加10再减。 (三)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。 (四)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个"零"; 3、末位不管有几个0都不读。 (五)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写"0"。 (六)4位数减法也要注意三条 1、相同数位对齐; 2、从个位减起; 3、哪一位数不够减,从前位退1,在本位加10再减。 小学六年级数学 学习方法 一、抓住课堂 数学学习重在平日工夫,不适于突击复习。平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要阐明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而重视题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。 二、高质量完成作业 所谓高质量是指高精确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和精确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精力,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机遇。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深入的印象。 三、勤思考,多提问 首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的道路。其次,学习任何学科都应抱着猜忌的态度,尤其是数学。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是肃清学习隐患的道路。 四、总结比较,理清思绪 (1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整顿出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区离开。 (2)题目的总结比较。同学可以建立自己的题库。一本是错题,一本是精题。对于平时作业,考试涌现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。还把见到的一些极其奇妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的辅助。 六年级数学单元知识点相关文章: ★六年级上册数学知识点整理归纳 ★六年级数学期末复习知识点汇总 ★六年级数学上册知识点复习 ★六年级数学复习要点 ★六年级数学上册知识点人教版 ★六年级数学上册知识点总结 ★六年级上册数学课本知识点归纳 ★六年级上册数学知识点 ★六年级数学上册知识点复习资料 ★人教版六年级数学的知识点总结