趣味数学小知识 数学小知识有哪些
1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。 2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。 4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。 5、传说早在四千五百年前,我们的祖先就用刻漏来计时。 6、中国是最早使用四舍五入法进行计算的国家。 7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。 8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。 9、荷兰数学家卢道夫把圆周率推算到了第35位。 10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
趣味数学小知识
讲述趣味数学的小知识可以提高小学生的学习热情,关于数学的一些趣味小知识有哪些?下面是我为你整理的趣味数学小知识,一起来看看吧。 趣味数学小知识:“+”、“-”, “×”,“÷” 的由来减号“+”、“-”— 五百年前德国人最先使用的。据说,当时酒商在售出酒后,曾用横线标出酒桶里的存酒,而当桶里的酒又 增加时,便用竖线条把原来画的横线划掉。于是就出现用以表示减少的“-”和用来表示增加的“+”。1489年,德国数学家魏德曼在他的著作中首先使用“+”、“-”这两个符号表示剩余和不足,后来又经过法国数学家韦达的宣传和提倡,开始普及,直到1630年,才得到大家的公认。 乘号“×”— 三百多年前英国著名数学家欧德莱最先使用的,他认为乘法是加法的一种特殊形式,于是他便把前人所发明的“×” 转动45°角,这样乘号“×”也就面世了。“×”既表示了乘法与加法的关系,又表示了相乘的方法。 除号“÷”— 最初这个符号是作为减号在欧洲大陆流行,最早人们用“:”表示除或比,也有人用分数线“-”表示比,后来有 人把二者结合起来就变成了“÷”,瑞士的数学家拉哈的著作中正式把“÷”作为除号。趣味数学小知识:奇妙的数字1212这个数字跟人类有缘,与我们的生活有密切的联系。如: 一年12个月 一昼夜12个时辰 时针在钟面上走一圈是12小时 在我国和亚洲一些国家有着12生肖的说法 我国传统用做表示次序的符号有12个,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥 小肠第一部分叫十二指肠,它的长度相当于本人12个手指的指幅 人体的胸部有12块胸椎,分别与12对肋骨相接 打排球时场上有12个球员 足球比赛罚点球的英制长度是12码趣味数学小知识:0是我国最早创造的 我们知道阿拉伯数字1、2、3、4、5、6、7、8、9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“2 4”,中间空着,把2004,写成“2 4”,怎么区别中间有几个零呢?为了避免看不清,就用点“· ”来表示,204写成“2·4”,那不和小数混淆了?直到公元876年才把“0”确定下来。
数学趣味小知识 简短的 20到50字左右
1.01的365次方=37.78343433289 >>>1; 1的365次方=1;0.99的365次方= 0.02551796445229 <<<1;1.01=1+0.01,也就是每天进步一点,1.01的365次方也就是说每天进步一点,一年以后,你将进步很大,远远大于“1”;1是指原地踏步,一年以后你还是原地踏步,还是那个“1”; 0.99=1-0.01,也就是说你每天退步一点点,你将在一年以后,远远小于“1”,远远被人抛在后面,将会是“1”事无成。
趣味数学小知识 数论部分:1、没有最大的质数。欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:http://www.xxteacher.net/bbs2/ThreadDetail.aspx?id=31900
趣味数学小知识 数论部分:1、没有最大的质数。欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:http://www.xxteacher.net/bbs2/ThreadDetail.aspx?id=31900
数学趣味小知识
抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 普乔柯趣题普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 列综合算式可求出第一天卖布的米数: 1026÷(l+2+6)=1026÷9=114(米) 而114×2=228(米) 228×3=684(米) 所以三天卖的布分别是:114米、228米、684米。 请你接这种方法做一道题。 有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 鬼谷算我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 请你根据这一算法计算下面的题目。 新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢? 是要这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
1-10中任何一个的数加上9,把结果各个位上的数相加,都能得到这个数 例如3+9=12 ,1+2=39+9=18,1+8=9 1+9=10,1+0=1
sdasdasdasdasdadsdadfewrfweewrwfscec e ew w ew frweeerfdxescxqedeg ewgty43retre
555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555?是这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
1-10中任何一个的数加上9,把结果各个位上的数相加,都能得到这个数 例如3+9=12 ,1+2=39+9=18,1+8=9 1+9=10,1+0=1
sdasdasdasdasdadsdadfewrfweewrwfscec e ew w ew frweeerfdxescxqedeg ewgty43retre
555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555?是这些么?
求数学趣味小知识
抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 普乔柯趣题普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 列综合算式可求出第一天卖布的米数: 1026÷(l+2+6)=1026÷9=114(米) 而114×2=228(米) 228×3=684(米) 所以三天卖的布分别是:114米、228米、684米。 请你接这种方法做一道题。 有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 鬼谷算我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 请你根据这一算法计算下面的题目。 新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢? 是要这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
在数学城电子计算器展销中心,售货员熟练地操作着各种型号的电子计算器,计算着各种问题。观看的人不时发出一阵阵赞扬声,算得多快多准呀。人群中不少小学生拉着自己的爸爸妈妈,吵着要买电子计算器。有了它,做起数学题该多好呀! “不!”忽然,一个身材奇特的小矮人跳上了柜台,摇着手,对小学生说:“小朋友不宜用这样的东西,要从小培养自己的计算能力,学会简便算法。有了好算法,有时候算起来比计算器还快呢。”大家一齐把目光集中在小矮人身上,仔细一看,原来是外号叫“半截儿”的小“5”。“什么?你能比我的计算器算得还快?”售货员奇怪地问。小“5”说:“你不信,我们试试。”说着,小“5”对大家说:“你们随便报一个数,求这个数乘以5的积,售货员请用电子计算器也一道算,看谁快?”“好!”大家一齐喊道。观看的人群中有人先报了个算式“246×5”。“1230”小“5”脱口而出。“314×5、289×5……”“1570、1445……”小“5”一口气报了出来。售货员还未来得及操作完,得数就被小“5”说出来了。“好啊!”大家热烈地鼓起掌来。小“5”笑着说:“这叫做‘添零折半法’,因为5是10的一半,一个数乘以5,只要把这个数扩大10倍,再折半就行了。比如,246×5=2460÷2=1230。”“我们再来比一比。”售货员不服气地说。“好,我们来计算任一个末位数是5的两位数的平方。”小“5”说。 “等于3025。”小“5”真快,一下子又报出了得数。 这时候,连售货员也佩服小“5”神速的口算能力了。小“5”说道:“任一个末位数是5的两位数的平方,只要把它的十位数字乘上比它大1的数,再在积的后面添上25,就是结果了。例如752=5625,56就是7和8相乘的结果。“哈哈,这样算快极了。” “半截儿,真正灵,敢同计算器比本领;方法妙,快又准,数学城里大明星。”不知是谁编了几句顺口溜,把大家都逗乐了
九九歌 九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
在数学城电子计算器展销中心,售货员熟练地操作着各种型号的电子计算器,计算着各种问题。观看的人不时发出一阵阵赞扬声,算得多快多准呀。人群中不少小学生拉着自己的爸爸妈妈,吵着要买电子计算器。有了它,做起数学题该多好呀! “不!”忽然,一个身材奇特的小矮人跳上了柜台,摇着手,对小学生说:“小朋友不宜用这样的东西,要从小培养自己的计算能力,学会简便算法。有了好算法,有时候算起来比计算器还快呢。”大家一齐把目光集中在小矮人身上,仔细一看,原来是外号叫“半截儿”的小“5”。“什么?你能比我的计算器算得还快?”售货员奇怪地问。小“5”说:“你不信,我们试试。”说着,小“5”对大家说:“你们随便报一个数,求这个数乘以5的积,售货员请用电子计算器也一道算,看谁快?”“好!”大家一齐喊道。观看的人群中有人先报了个算式“246×5”。“1230”小“5”脱口而出。“314×5、289×5……”“1570、1445……”小“5”一口气报了出来。售货员还未来得及操作完,得数就被小“5”说出来了。“好啊!”大家热烈地鼓起掌来。小“5”笑着说:“这叫做‘添零折半法’,因为5是10的一半,一个数乘以5,只要把这个数扩大10倍,再折半就行了。比如,246×5=2460÷2=1230。”“我们再来比一比。”售货员不服气地说。“好,我们来计算任一个末位数是5的两位数的平方。”小“5”说。 “等于3025。”小“5”真快,一下子又报出了得数。 这时候,连售货员也佩服小“5”神速的口算能力了。小“5”说道:“任一个末位数是5的两位数的平方,只要把它的十位数字乘上比它大1的数,再在积的后面添上25,就是结果了。例如752=5625,56就是7和8相乘的结果。“哈哈,这样算快极了。” “半截儿,真正灵,敢同计算器比本领;方法妙,快又准,数学城里大明星。”不知是谁编了几句顺口溜,把大家都逗乐了
九九歌 九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符