初二数学上册知识点总结归纳
因为有知识,我们上了太空,我们延长了人均寿命。更因为有知识,我们超出生死,不再疑惑。下面给大家分享一些关于初二数学上册知识点总结归纳,希望对大家有所帮助。 初二数学上册知识点总结:二元一次方程组 1、认识二元一次方程组 ① 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程 ② 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组 ③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解 2、求解二元一次方程组 ① 将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法 ② 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法 3、应用二元一次方程组 ① 鸡兔同笼 4、应用二元一次方程组 ① 增减收支 5、应用二元一次方程组 ① 里程碑上的数 6、二元一次方程组与一次函数 ① 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线 ② 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标 7、用二元一次方程组确定一次函数表达式 ① 先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。 8、三元一次方程组 ① 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程 ② 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组 ③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解. 初二数学上册知识点总结:数据的分析 1、平均数 ① 一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。 ② 在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数 2、中位数与众数 ① 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数 ② 一组数据中出现次数最多的那个数据叫做这组数据的众数 ③ 平均数、中位数和众数都是描述数据集中趋势的统计量 ④ 计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。 ⑤ 中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息 ⑥ 各个数据重复次数大致相等时,众数往往没有特别意义 3、从统计图分析数据的集中趋势 4、数据的离散程度 ① 实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量 ② 数学上,数据的离散程度还可以用方差或标准差刻画 ③ 方差是各个数据与平均数差的平方的平均数 ④ 其中是x1 ,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根 ⑤ 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。 初二数学上册知识点总结:平行线的证明 1、为什么要证明 ① 实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明 2、定义与命题 ① 证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义 ② 判断一件事情的句子,叫做命题 ③ 一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么.....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论 ④ 正确的命题称为真命题,不正确的命题称为假命题 ⑤ 要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例 ⑥ 欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断 ⑦ 演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明 a. 本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线 b. 两点之间线段最短 c. 同一平面内,过一点有且只有一条直线与已知直线垂直 d. 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行) e. 过直线外一点有且只有一条直线与这条直线平行 f. 两边及其夹角分别相等的两个三角形全等 g. 两角及其夹边分别相等的两个三角形全等 h. 三边分别相等的两个三角形全等 ⑧ 此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据 ⑨ 定理:同角(等角)的补角相等 同角(等角)的余角相等 三角形的任意两边之和大于第三边 对顶角相等 3、平行线的判定 ① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行 ② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。 4、平行线的性质 ① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等 ② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等 ③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补 ④ 定理:平行于同一条直线的两条直线平行 5、三角形内角和定理 ① 三角形内角和定理:三角形的内角和等于180° ② 定理:三角形的一个外角等于和它不相邻的两个内角的和 定理:三角形的一个外角大于任何一个和它不相邻的内角 ③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。 初二数学上册知识点总结归纳相关文章: ★初二数学上册知识点总结 ★人教版八年级数学上册知识点总结 ★人教版八年级数学上册知识点总结 ★初二上册数学知识点总结 ★八年级上册数学的知识点归纳 ★初二上册数学知识点总结与学习方法 ★八年级上册数学知识点总结 ★八年级上册数学知识点总结与八年级数学学习技巧 ★初二数学上册知识点的测试题汇总 ★初二数学上册三角形及四边形重点知识归纳

初二数学上册重点知识点总结
初中生在学习数学的过程中应该注意知识点的总结,下面总结了初二数学上册知识点,供大家参考。 位置与坐标 1.确定位置 在平面内,确定一个物体的位置一般需要两个数据。 2.平面直角坐标系 ①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。 ②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。 ③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。 ④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。 ⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。 3.轴对称与坐标变化 关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。 一次函数 (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。 (二)函数三要素 1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。 2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。 3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。 (三)一次函数的表示方法 1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。 2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。 3.图像法:用图象来表示函数关系的方法叫做图象法。 (四)一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。 2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。 3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。 4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。 5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。 6.平移时:上加下减在末尾,左加右减在中间。 全等三角形 1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。 2.三角形全等的判定 (1)SSS(边边边) 三边对应相等的三角形是全等三角形。 (2)SAS(边角边) 两边及其夹角对应相等的三角形是全等三角形。 (3)ASA(角边角) 两角及其夹边对应相等的三角形全等。 (4)AAS(角角边) 两角及其一角的对边对应相等的三角形全等。 (5)RHS(直角、斜边、边) 在一对直角三角形中,斜边及另一条直角边相等。 3.角平分线 (1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。 (2)性质 ①角平分线分得的两个角相等,都等于该角的一半。 ②角平分线上的点到角的两边的距离相等。 分式 (一)分式的运算 分式四则运算,顺序乘除加减, 乘除同级运算,除法符号须变(乘), 乘法进行化简,因式分解在先, 分子分母相约,然后再行运算, 加减分母需同,分母化积关键, 找出最简公分母,通分不是很难, 变号必须两处,结果要求最简。 (二)分式的运算法则 (1)约分 ①如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。 ②分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。 (2)公因式的提取方法 系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。 (3)除法 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。 (4)乘方 分子乘方做分子,分母乘方做分母,可以约分的约分,最后化成最简。 图形的平移与旋转 1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。 2.平移性质 (1)图形平移前后的形状和大小没有变化,只是位置发生变化。 (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

初二数学上学期知识点归纳
数学是一门基础学科,对于广大八年级学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。这是我整理的初二上学期数学知识点归纳,希望你能从中得到感悟! 初二数学上学期知识点归纳1-40 1 全等三角形的对应边、对应角相等 ¬ 2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬ 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬ 4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬ 5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬ 6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬ 7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬ 8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬ 9 角的平分线是到角的两边距离相等的所有点的集合 ¬ 10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬ 21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬ 22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬ 23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬ 24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬ 25 推论1 三个角都相等的三角形是等边三角形 ¬ 26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬ 27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬ 28 直角三角形斜边上的中线等于斜边上的一半 ¬ 29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬ 30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬ 31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬ 32 定理1 关于某条直线对称的两个图形是全等形 ¬ 33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬ 34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬ 35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬ 36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬ 37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬ 38定理 四边形的内角和等于360° ¬ 39四边形的外角和等于360° ¬ 40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬ 初二数学上学期知识点归纳41-80 41推论 任意多边的外角和等于360° ¬ 42平行四边形性质定理1 平行四边形的对角相等 ¬ 43平行四边形性质定理2 平行四边形的对边相等 ¬ 44推论 夹在两条平行线间的平行线段相等 ¬ 45平行四边形性质定理3 平行四边形的对角线互相平分 ¬ 46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬ 47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬ 48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬ 49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬ 50矩形性质定理1 矩形的四个角都是直角 ¬ 51矩形性质定理2 矩形的对角线相等 ¬ 52矩形判定定理1 有三个角是直角的四边形是矩形 ¬ 53矩形判定定理2 对角线相等的平行四边形是矩形 ¬ 54菱形性质定理1 菱形的四条边都相等 ¬ 55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬ 56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬ 57菱形判定定理1 四边都相等的四边形是菱形 ¬ 58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬ 59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬ 60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬ 61定理1 关于中心对称的两个图形是全等的 ¬ 62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬ 63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬ 点平分,那么这两个图形关于这一点对称 ¬ 64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬ 65等腰梯形的两条对角线相等 ¬ 66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬ 67对角线相等的梯形是等腰梯形 ¬ 68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬ 相等,那么在其他直线上截得的线段也相等 ¬ 69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬ 70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬ 三边 ¬ 71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬ 的一半 ¬ 72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬ 一半 L=(a+b)÷2 S=L×h ¬ 73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬ 如果ad=bc,那么a:b=c:d ¬ 74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬ 75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬ (a+c+…+m)/(b+d+…+n)=a/b ¬ 76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬ 线段成比例 ¬ 77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬ 78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬ 79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬ 80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬ 初二数学上学期知识点归纳81-136 81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬ 82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬ 83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬ 84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬ 85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ¬ 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ¬ 86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ¬ 分线的比都等于相似比 ¬ 87 性质定理2 相似三角形周长的比等于相似比 ¬ 88 性质定理3 相似三角形面积的比等于相似比的平方 ¬ 89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ¬ 于它的余角的正弦值 ¬ 90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ¬ 于它的余角的正切值 ¬ 91圆是定点的距离等于定长的点的集合 ¬ 92圆的内部可以看作是圆心的距离小于半径的点的集合 ¬ 93圆的外部可以看作是圆心的距离大于半径的点的集合 ¬ 94同圆或等圆的半径相等 ¬ 95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ¬ 径的圆 ¬ 96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ¬ 平分线 ¬ 97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ¬ 98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ¬ 离相等的一条直线 ¬ 99定理 不在同一直线上的三点确定一个圆. ¬ 100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ¬ 101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ¬ ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ¬ ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ¬ 102推论2 圆的两条平行弦所夹的弧相等 ¬ 103圆是以圆心为对称中心的中心对称图形 ¬ 104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ¬ 相等,所对的弦的弦心距相等 ¬ 105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ¬ 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ¬ 106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ¬ 107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ¬ 108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ¬ 对的弦是直径 ¬ 109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ¬ 110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ¬ 的内对角 ¬ 111①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ¬ ③直线L和⊙O相离 d>r ¬ 112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ¬ 113切线的性质定理 圆的切线垂直于经过切点的半径 ¬ 114推论1 经过圆心且垂直于切线的直线必经过切点 ¬ 115推论2 经过切点且垂直于切线的直线必经过圆心 ¬ 116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ¬ 圆心和这一点的连线平分两条切线的夹角 ¬ 117圆的外切四边形的两组对边的和相等 ¬ 118弦切角定理 弦切角等于它所夹的弧对的圆周角 ¬ 119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ¬ 120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ¬ 相等 ¬ 121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ¬ 两条线段的比例中项 ¬ 122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ¬ 线与圆交点的两条线段长的比例中项 ¬ 123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ¬ 124如果两个圆相切,那么切点一定在连心线上 ¬ 125①两圆外离 d>R+r ②两圆外切 d=R+r ¬ ③两圆相交 R-rr) ⑤两圆内含d r) ¬ 126定理 相交两圆的连心线垂直平分两圆的公共弦 ¬ 127定理 把圆分成n(n≥3): ¬ ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ¬ ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ¬ 128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ¬ 129正n边形的每个内角都等于(n-2)×180°/n ¬ 130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ¬ 131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ¬ 132正三角形面积√3a/4 a表示边长 ¬ 133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ¬ 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ¬ 134弧长计算公式:L=n兀R/180 ¬ 135扇形面积公式:S扇形=n兀R^2/360=LR/2 ¬ 136内公切线长= d-(R-r) 外公切线长= d-(R+r)¬

八年级数学上册知识点总结
失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的学习 方法 都是不断重复学习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。 初二上学期数学知识点归纳 一、勾股定理 1、勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。 2、勾股定理的逆定理 如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。 3、勾股数 满足的三个正整数,称为勾股数。 常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。 二、证明 1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。 2、三角形内角和定理:三角形三个内角的和等于180度。 (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。 (2)三角形的外角与它相邻的内角是互为补角。 3、三角形的外角与它不相邻的内角关系 (1)三角形的一个外角等于和它不相邻的两个内角的和。 (2)三角形的一个外角大于任何一个和它不相邻的内角。 4、证明一个命题是真命题的基本步骤 (1)根据题意,画出图形。 (2)根据条件、结论,结合图形,写出已知、求证。 (3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。 八年级上册数学知识点 (一)运用公式法 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 初二数学知识点归纳 第一章分式 1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式方程及其解法 第二章反比例函数 1反比例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两支的增减性相同; 2反比例函数在实际问题中的应用 八年级数学上册知识点总结相关文章: ★人教版八年级数学上册知识点总结 ★初二数学上册知识点总结 ★八年级数学知识点整理归纳 ★八年级数学上册知识点归纳 ★初二上册数学知识点归纳总结 ★初二数学上册知识点 ★八年级上册数学的知识点归纳 ★初二数学上册知识点总结 ★初二数学上册知识点总结人教版 ★初二数学知识点归纳上册人教版

初二数学知识点归纳上册人教版
虽然知道,造成高二数学成绩不好的原因是多方面的,但最核心的一点是我们对相关知识的掌握还不够透彻。初二数学知识点归纳上册人教版有哪些?一起来看看初二数学知识点归纳上册人教版,欢迎查阅! 初二数学知识点总结归纳 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: ① 列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.作为最后结果,如果是分式则应该是最简分式. (九)含有字母系数的一元一次方程 1.含有字母系数的一元一次方程 引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 初二数学复习提纲方法 一、克服心理疲劳 第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力; 第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态; 第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。 二、战胜高原现象 复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。 三、重视复习“错误” 如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。 四、把握心理特点搞好考前复习 实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。 1、课本不容忽视 对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。 2、错题本 相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。 初二数学全册复习提纲 第十一章 一次函数 我们称数值变化的量为变量(variable)。 有些量的数值是始终不变的,我们称它们为常量(constant)。 在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。 如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。 形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。 形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。 每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。 第十二章 数据的描述 我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。 常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。 条形图:描述各组数据的个数。 复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。 扇形图:描述各组频数的大小在总数中所占的百分比。 折线图:描述数据的变化趋势。 直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。 在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。 求出各个小组两个端点的平均数,这些平均数称为组中值。 第十三章 全等三角形 能够完全重合的两个图形叫做全等形(congruent figures)。 能够完全重合的两个三角形叫做全等三角形(congruent triangles)。 全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。 全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS) 两边和它们的夹角对应相等的两个三角形全等。(SAS) 两角和它们的夹边对应相等的两个三角形全等。(ASA) 两个角和其中一个角的对边对应相等的两个三角形全等。(AAS) 角平分线的性质:角平分线上的点到角的两边的距离相等。 到角两边的距离相等的点在角的平分线上。 第十四章 轴对称 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。 轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。 线段垂直平分线上的点与这条线段两个端点的距离相等。 由一个平面图形得到它的轴对称图形叫做轴对称变换。 等腰三角形的性质: 等腰三角形的两个底角相等。(等边对等角) 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°) 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 有一个角是60°的等腰三角形是等边三角形。 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 第十五章 整式 式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。 单项式中的数字因数叫做这个单项式的系数(coefficient)。 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。 几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constantterm)。 多项式里次数的项的次数,就是这个多项式的次数。 单项式和多项式统称整式(integral expression_r)。 所含字母相同,并且相同字母的指数也相同的项叫做同类项。 把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。 几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。 同底数幂相乘,底数不变,指数相加。 幂的乘方,底数不变,指数相乘 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 (x+p)(x+q)=x^2+(p+q)x+pq 平方差公式:(a+b)(a-b)=a^2-b^2 完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2 (a+b+c)^2=a^2+2a(b+c)+(b+c)^2 同底数幂相除,底数不变,指数相减。 任何不等于0的数的0次幂都等于1。 第十六章 分式 如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。 分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方要把分子、分母分别乘方。 a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 第十七章 反比例函数 形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。 反比例函数的图像属于双曲线(hyperbola)。 当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 第十八章 勾股定理 勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2 勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。 经过证明被确认正确的命题叫做定理(theorem)。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 第十九章 四边形 有两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。 平行四边形的判定: 1.两组对边分别相等的四边形是平行四边形; 2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 三角形的中位线平行于三角形的第三边,且等于第三边的一半。 直角三角形斜边上的中线等于斜边的一半。 矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。 矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。 3.有三个角是直角的四边形是矩形。 菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形(rhombus)。 2.对角线互相垂直的平行四边形是菱形。 3.四条边相等的四边形是菱形。 S菱形=1/2×ab(a、b为两条对角线) 正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。 正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。 一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。 等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。 线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。 第二十章 数据的分析 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 一组数据中出现次数最多的数据就是这组数据的众数(mode)。 一组数据中的数据与最小数据的差叫做这组数据的极差(range)。 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 初二数学知识点归纳上册人教版相关文章: ★人教版八年级数学上册知识点总结 ★初二数学上册知识点总结 ★初二数学上册知识点总结归纳 ★数学八年级上册知识人教版 ★八年级数学上册知识点归纳 ★初二数学上册知识点总结2020 ★八年级上册数学的知识点归纳 ★人教版八年级上册数学教材分析 ★初二上册数学知识点总结与学习方法 ★八年级上册数学知识点总结
