小学四年级全国数学一等奖手抄报图片[注:只要图片,不要文字,请注意]
做一个版画书!! .....用铅笔打草稿,修该修改!再抄上去!!!!!
自己想想
5656
1
123467956飞给你吧
自己想想
5656
1
123467956飞给你吧
6年级下册数学手抄报
在学校,手抄报是第二课堂的一种很好的活动形式。下面是我网络整理的6年级下册数学手抄报资料以供大家阅读。6年级下册数学手抄报资料(一)数学故事 我国著名科学家钱学森说:“灵感,也就是人在科学或艺术创作中的高潮,突然出现的、瞬时即逝的短暂思维过程.”唯物论者也承认灵感,但它不是上帝的恩赐,而是人们在实践活动中逐步形成或培养出来的一种不同常人的高效率、大跨度创造性思维的表现.灵感是紧张的创造性活动和长期艰苦劳动的结果. 数学灵感是人脑对数学对象结构关系的一种突发性的领悟.在解答数学难题时,通常会遇到这样的情况:尽管从多角度、用各种方法去进行探索,但百思不得其解.可正在“山穷水尽疑无路”之际,灵感出现了,从而创造了“柳暗花明又一村”的美的境界. 灵感与创造思维、灵感与数学发现究竟有何联系?我们可看看下面几位数学家的数学灵感与数学发现的情况. 法国数学家笛卡儿,早就有把相互独立的代数与几何结合起来的愿望,经过长时期的思考,但未找到合适的方法.1619年随军服务时他仍在思考.11月9日,在多瑙河畔的诺伊堡,他几天来整日沉迷在思考之中而不得其解,入睡后连作数梦,梦中迷迷糊糊地想到引入直角坐标系的方法.第二天,也即是11月10日清晨,醒后立即将梦中所得加以整理,终于创造了解析几何学,笛卡尔获得了成功,但他酝酿时间为1617~1619年,约为两年的时间. 法国著名数学家庞加莱在谈到他发现富克斯函数的变换方法时回忆说:“1880年有一次我离开当时居住的卡昂去作一次由矿业学校主办的地质考察旅行.旅途的奔波使我忘掉了我的数学工作,抵达库特塞斯后,我们乘公共马车到各处去转转,正当我跨上踏板的瞬间,脑子里突然出现了一个想法,即我曾用来定义富克斯函数的诸变换跟非欧几何中的诸变换是一致的.”庞加莱回到住址后,马上把这一结果加以证明.这是在长时间紧张工作之后,思想放松时灵感的突然闪现,是经过了约一年时间的苦思之后才获得成功的. 被称为数学王子的高斯为证明某一算术定理,曾苦思冥想达两年之久,后来突然得到一个想法,使他获得成功.高斯回忆说:“终于在两天前我成功了……像闪电一样,谜一下解开了.我自己也说不清楚是什么导线把原先的知识和我成功的东西连接起来.”尽管解开这个谜的想法是突然来的,但高斯本人经过两年的艰苦努力才为这个成功的到来做好了准备. 由以上对三位数学家数学灵感的出现而导致数学发现的描述,可以看出这种在长时期持续劳动后的某时刻出现的“突然领悟”是一种非逻辑的高层次的创造活动,亦即灵感思维活动. 灵感是不能靠偶然的机遇、守株待兔式的消极等待可以得到的.必须是执著追求、锲而不舍、百折不挠,才能有成功的一天.所谓“触景生情”“灵机一动”“眉头一皱,计上心来”,都是经过长期坚持不懈地创造性劳动而“偶然得之”的.巴斯加说:“机遇只偏爱有准备的头脑.”恰恰道出了此中的真谛. 6年级下册数学手抄报资料(二)华罗庚(1910年11月12日~1985年6月12日),江苏金坛人,国际数学大师,中国科学院院士,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。[1]他为中国数学的发展作出了无与伦比的贡献。 被誉为“中国现代数学之父”,“被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学史家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院的院士”。 华罗庚先生早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。他在多复变函数论、矩阵几何学方面的卓越贡献,更是影响到了世界数学的发展。也有国际上有名的“典型群中国学派”,华罗庚先生在多复变函数论,典型群方面的研究领先西方数学界10多年,这些研究成果被著名的华裔数学家丘成桐高度称赞。华罗庚先生是难以比拟的天才。 著名数学家劳埃尔·熊飞儿德说:“他的研究范围之广,堪称为世界上名列前茅的数学家之一。受到他直接影响的人也许比受历史上任何数学家直接影响的人都多”,“华罗庚的存在堪比任何一位大数学家卓越的价值。” 哈贝斯坦:“华罗庚是他这个时代的国际领袖数学家之一。” 克拉达:“华罗庚形成中国数学。” 美国数论学家莱麦尔说:“华罗庚有抓住别人最好的工作的不可思议的能力,并能准确地指出这些结果可以改进的方法。他有自己的技巧,他广泛阅读并掌握了20世纪数论的所有制高点,他的主要兴趣是改进整个领域,他试图推广他所遇到的每一个结果。” 丘成桐:“……先生起江南,读书清华。浮四海,从哈代,访俄师,游美国。创新求变,会意相得。堆垒素数,复变多元。雅篇艳什,迭互秀出。匹夫挽狂澜于即倒,成一家之言,卓尔出群,斯何人也,其先生乎……” 王元先生说,从数学领域来说,大致分为两个:一个是分析,一个是代数。绝大多数的数学家一般只在其中一个领域里做出贡献,比如我自己,就是在分析方面;但华罗庚却在两方面都有很大的贡献。另外一方面,数学又分成纯粹数学和应用数学,华罗庚也是同时在这两方面都有很大贡献。 吴耀祖:“华先生天赋丰厚,多才好学,学通中外,史汇古今,见识渊博,论著充栋。他的生平工作和贡献,比比显示于他经历步过的广泛数学领域中,皆于可深入处即深入探隽,可浅出的即浅明清澈,能推广的即面面推广,能抽象的即悠然抽象……” “我没有元老他们这么幸运,能够成为华老的入室弟子”,在中国科学院院士、著名数学家杨乐看来,没有成为华老正式的徒弟是一生的遗憾,“但在数学研究的道路上,华老确实深深地影响着我”。 美国著名数学史家贝特曼著文称:“华罗庚是中国的爱因斯坦,够成为全世界所有著名科学院院士”。 被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。6年级下册数学手抄报资料(三)陈景润(1933年5月22日~1996年3月19日),汉族,福建福州人, 1953年厦门大学数学系毕业,中国著名数学家,是国际著名数学家。 1953年~1954年在北京四中任教,因口齿不清,被拒绝上讲台授课,只可批改作业。后被“停职回乡养病”,调回厦门大学任资料员,同时研究数论,对组合数学与现代经济管理、科学实验、尖端技术、人类生活的密切关系等问题也作了研究。 1956年调入中国科学院数学研究所。 1980年当选中科院物理学数学部委员(现在的院士)。 他研究哥德巴赫猜想和其他数论问题的成就,至今仍然在世界上遥遥领先,被称为哥德巴赫猜想第一人。 世界级的数学大师、美国学者安德烈·韦伊(André Weil)曾这样称赞他:“陈景润先生做的每一项工作,都好像是在喜马拉雅山山巅上行走。危险,但是一旦成功,必定影响世人。” 历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。 发表研究论文 25篇,并有《数学趣味谈》、《组合数学》等著作。 主要著作 《算术级数中的最小素数》、《表达偶数为一个素数及一个不超过两个素数的乘积之和》 、《数学趣味谈》、《 组合数学》、《哥德巴赫猜想》 荣誉职位 陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。 任第四、五、六届全国人民代表大会代表。 2009年9月14日,他被评为100位新中国成立以来感动中国人物之一。 看了6年级下册数学手抄报的人还看: 1. 6年级数学手抄报图片大全 2. 6年级数学手抄报图片 3. 6年级数学手抄报大全 4. 6年级数学手抄报图 5. 6年级数学手抄报内容 6. 六年级数学手抄报精选 7. 数学手抄报版面设计图六年级 以上就是我给大家分享的6年级下册数学手抄报全部内容,希望对你有所帮助。
四年级数学手抄报一等奖
1.加法交换律:两数相加交换加数的位置,和不变. a+b=b+a 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变. a+b+c=a+(b+c) 3.乘法交换律:两数相乘,交换因数的位置,积不变. A×B=B×A 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变. A×B×C=(A×B)×C 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5. 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0. 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立. 8.方程式:含有未知数的等式叫方程式. 9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式. N元——N个未知数;M次——未知数最高幂次数 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数. 11.分数的加减乘除法则: 同分母的分数相加减,只把分子相加减,分母不变. 异分母的分数相加减,先通分,然后再加减. 分数的乘法则:用分子的积做分子,用分母的积做分母. 分数的除法则:除以一个数等于乘以这个数的倒数. 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小. 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变. 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母. 15.分数除以整数(0除外),等于分数乘以这个整数的倒数. 16.真分数:分子比分母小的分数叫做真分数. 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1. 18.带分数:把假分数写成整数和真分数的形式,叫做带分数. 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变. 20.一个数除以分数,等于这个数乘以分数的倒数. 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
五年级数学手抄报怎么画 一等奖
五年级所有单元手抄报 一单元:《分数乘法》 分数乘法(一)知识点:1、理解分数乘整数的意义.分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算.2、分数乘整数的计算方法.分母不变,分子和整数相乘的积作分子.能约分的要约成最简分数.3、计算时,可以先约分在计算.分数乘法(二)知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算.2、能够求一个数的几分之几是多少.3、理解打折的含义.例如:九折,是指现价是原价的十分之九.分数乘法(三)知识点:1、分数乘分数的计算方法,并能正确进行计算.分子相乘做分子,分母相乘做分母,能约分的可以先约分.计算结果要求是最简分数.2、比较分数相乘的积与每一个乘数的大小.真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数.二单元:《长方体(一)》长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称.2、长方体、正方体各自的特点.顶 点 面 棱个 数 个 数 形 状 大小关系 条数 长度关系8 6 都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形. 相对的面是完全一样的长方形. 12 可以分为三组,相对的棱平行且相等.8 6 都是正方形. 每个面都是正方形. 12 长度都相等.3、知道正方体是特殊的长方体.4、能计算长方体、正方体的棱长总和.长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4正方体的棱长总和=棱长*12灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长.展开与折叠知识点:1、认识并了解长方体和正方体的平面展开图.2、了解正方体平面展开图的几种形式,并以此来判断.长方体的表面积知识点:1、理解表面积的意义.是指六个面的面积之和.2、长方体和正方体表面积的计算方法.3、能结合生活中的实际情况,计算图形的表面积.露在外面的面知识点:1、在观察中,通过不同的观察策略进行观察.如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起.2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律.三单元:《分数除法》倒数知识点:1、发现倒数的特征并理解倒数的意义. 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数.倒数是对两个数来说的,并不是孤立存在的.
三年级数学手抄报简单 一等奖
常见基本公式 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽S=ab 正方形的面积=边长×边长S=a.a=a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r半径=直径÷2 r=d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr 圆的面积=圆周率×半径×半径 三角形的面积=底×高÷2.公式S=a×h÷2 正方形的面积=边长×边长公式S=a×a 长方形的面积=长×宽公式S=a×b 平行四边形的面积=底×高公式S=a×h 梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2 内角和:三角形的内角和=180度. 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的侧面积:圆柱的侧面积等于底面的周长乘高.公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh 圆锥的体积=1/3底面×积高.公式:V=1/3Sh