趣味数学小知识(趣味数学小故事)

趣味数学小知识 数学小知识有哪些

1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。 2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。 4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。 5、传说早在四千五百年前,我们的祖先就用刻漏来计时。 6、中国是最早使用四舍五入法进行计算的国家。 7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。 8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。 9、荷兰数学家卢道夫把圆周率推算到了第35位。 10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
趣味数学小知识 数学小知识有哪些

短小的趣味数学故事

趣味数学故事集数学知识教育、数学兴趣教育和数学应用教育于一体,具有独特的教学价值与意义。接下来我为你整理了短小的趣味数学故事,一起来看看吧。 短小的趣味数学故事(一)孙悟空巧解比例 话说唐僧和三个徒弟为普渡众生去西天取经,要经历九九八十一难,困难重重,关卡层层,是常人很难办到的。师徒四人走了一天,觉得累了,便休息一下。八戒把钉耙一丢,倒地便睡,唐僧与沙僧打坐,悟空舞动金箍棒。 只见悟空一声“变”,金箍棒由原来的“绣花针”变成了高耸入云的“大柱子”。悟空叫道:“八戒,你猜我的金箍棒现在有多长?”八戒懒懒地说:“能有多长,不过10米罢了。”悟空说:“俺这金箍棒可神了,5秒能变10米。”“那25秒能变15米”的八戒随口说道。沙僧说:“这肯定算错了,5秒比10米小,25秒比15米大……”八戒说:“扯淡,这个理由一点也不充分。”悟空说:“那我就说说理由,让你们心服口服。”八戒说:“愿闻其详。”悟空说:“用解比例的方法,设25秒能变x米,比例是5:10=25:x,5x=250,x=50,答案应该是50米啊!”“这……这……”八戒哑口无言,“还有一种方法”,沙僧补充道:“5秒能变10米,10÷5=2米,意思是1秒能变2米长,25秒就能变25×2=50米长。”八戒如醍醐灌顶,连连称是。 唐僧在一旁听着,说道:“你们都很聪明,用不同的方法解开了这道题。凡事要深思熟虑,八戒,你以后可不能瞎掰了,要用理由说明问题。” “一定,一定,徒儿谨记师父教诲,今后要学好数学……”哈哈哈,师徒四人伴着笑声又启程了。 短小的趣味数学故事(二)两个统计小故事 这两个故事都发生在二战期间,并且都是盟军方面机智的统计学家,数学在二战期间充当了十分重要的角色,今天说的是统计。 第一个故事发生在英国,二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期地对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。 为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是求助于统计学家。统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家很肯定地说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。 第二个故事与德国坦克有关。我们知道德国的坦克战在二战前期占了很多便宜,直到后来,苏联的坦克才能和德国坦克一拼高下,坦克数量作为德军的主要作战力量的数据是盟军非常希望获得的情报,有很多盟军特工的任务就是窃取德军坦克总量情报。然而根据战后所获得的数据,真正可靠的情报不是来源于盟军特工,而是统计学家。 统计学家做了什么事情呢?这和德军制造坦克的惯例有关,德军坦克在出厂之后按生产的先后顺序编号,1,2,…,N,这是一个十分古板的传统,正是因为这个传统,德军送给了盟军统计学家需要的数据。盟军在战争中缴获了德军的一些坦克并且获取了这些坦克的编号,现在统计学家需要在这些编号的基础上估计N,也就是德军的坦克总量,而这通过一定的统计工具就可以实现。 看过这两个故事,同学们是不是对统计有了更大的兴趣? 短小的趣味数学故事(三)巧查脚印破命案 巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。下面这则故事就是出自—位导游之口。 古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。 某日黄昏,怪人的四位互不相识的朋友阿列克赛、巴顿、克林、杜邦,几乎在同一时间先后来访。他们发现怪人已经被人杀害了,房间里面看起来很恐怖。当下四人大惊失色,争先恐后地拼命逃走。从脏乱不堪的狭窄楼梯(一次只能通过一人)跑下来,阿列克赛一步下2级台阶,巴顿一步下3级台阶,克林一步下4级台阶,而杜邦的本事最大,竟然一步能下5级台阶。 出事以后,侠盗亚森罗宾乔装成一名体面的上流社会绅士,自告奋勇地前来侦破此案。他发现,同时印下四个人脚印的台阶仅在最高处和最低处。 为了追查凶手,脚印混乱了就不好办,于是亚森罗宾特别重视只留有一个人脚印的台阶。后来的结果充分证明他的看法是正确无误的,最后终于抓获凶手,把他绳之以法。
短小的趣味数学故事

求数学趣味小知识

抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 普乔柯趣题普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 列综合算式可求出第一天卖布的米数: 1026÷(l+2+6)=1026÷9=114(米) 而114×2=228(米) 228×3=684(米) 所以三天卖的布分别是:114米、228米、684米。 请你接这种方法做一道题。 有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 鬼谷算我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 请你根据这一算法计算下面的题目。 新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢? 是要这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
在数学城电子计算器展销中心,售货员熟练地操作着各种型号的电子计算器,计算着各种问题。观看的人不时发出一阵阵赞扬声,算得多快多准呀。人群中不少小学生拉着自己的爸爸妈妈,吵着要买电子计算器。有了它,做起数学题该多好呀! “不!”忽然,一个身材奇特的小矮人跳上了柜台,摇着手,对小学生说:“小朋友不宜用这样的东西,要从小培养自己的计算能力,学会简便算法。有了好算法,有时候算起来比计算器还快呢。”大家一齐把目光集中在小矮人身上,仔细一看,原来是外号叫“半截儿”的小“5”。“什么?你能比我的计算器算得还快?”售货员奇怪地问。小“5”说:“你不信,我们试试。”说着,小“5”对大家说:“你们随便报一个数,求这个数乘以5的积,售货员请用电子计算器也一道算,看谁快?”“好!”大家一齐喊道。观看的人群中有人先报了个算式“246×5”。“1230”小“5”脱口而出。“314×5、289×5……”“1570、1445……”小“5”一口气报了出来。售货员还未来得及操作完,得数就被小“5”说出来了。“好啊!”大家热烈地鼓起掌来。小“5”笑着说:“这叫做‘添零折半法’,因为5是10的一半,一个数乘以5,只要把这个数扩大10倍,再折半就行了。比如,246×5=2460÷2=1230。”“我们再来比一比。”售货员不服气地说。“好,我们来计算任一个末位数是5的两位数的平方。”小“5”说。 “等于3025。”小“5”真快,一下子又报出了得数。 这时候,连售货员也佩服小“5”神速的口算能力了。小“5”说道:“任一个末位数是5的两位数的平方,只要把它的十位数字乘上比它大1的数,再在积的后面添上25,就是结果了。例如752=5625,56就是7和8相乘的结果。“哈哈,这样算快极了。” “半截儿,真正灵,敢同计算器比本领;方法妙,快又准,数学城里大明星。”不知是谁编了几句顺口溜,把大家都逗乐了
九九歌 九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符
求数学趣味小知识

年俗里面藏有多种趣味的数学知识,你注意过吗?

一年一度的春节即将来临,每当过年的时候,最幸福的那么个小孩子了,因为他们不仅能够在过年的时候收到压岁钱,还能够在过年的时候学到很多趣味的数学知识,灶喊你注意到过年俗里面藏有的趣味数学知识吗?年俗里面藏有的趣味数学知识主要分为三类。 第一类,数学里的轴对称类知识。每当过年的时候,家家户户都会除旧迎新,贴上火红的春联迎接新的一年的到来,在贴春联的时候,要求上下左右都是距离相等的,这里运用的就是轴对称图形的性质。一般情况下是大人站在凳子上贴春联,小孩子站在后面看大人贴的是否对称,长辈会告诉小孩子们什么是对称,怎么贴是好看的,在贴对联的过程中,小孩子就学会了轴对称图形的性质。另外长辈带着晚辈们剪窗花的时候,一般是对着剪开再对折再展开,这个过程也运用了轴对称图形的性质,这就是年俗里面藏有的趣味数学知识,小孩子们就在过年的期间掌握了这样的数学知识。 第二类,数学里的分类,数数知识。在过年的时候,亲朋好友改做欢聚一堂,许多多人聚在一起吃饭的时候,会让孩子去摆碗筷,让孩子去数一数,总共有多少位客人,需要多少个碗?多少个筷子呢?在这个过程中,既锻炼了孩子的数数能力,又让孩子学会了数学中的分类和单双数知识。孩子在学校的时候可能核辩衡是刚接触到这些知识,在过年期间这部分知识在生活中得到了运用,使孩子掌握的知识得到了巩固,这也是年俗里面藏有的趣味数学知识。 第三类,数学里的财产分割知识。春节的时候小孩子们都会收到来自长辈的红包,这些红包代表着长辈对于晚辈真挚的祝福,当小孩子收到了红包之后,家长会引导孩子把他所获得的红包进行分割,一部分存起来,一部分消费,一部分用于送礼物,就这样在家长的引导之下,孩子就学会了数学里的财产分割问题,这也是年俗里面所蕴含的趣味数学知识。 综上所述,就是我所注意到的年俗里面藏有的趣味数学知识。
我是注意过的,就比如说年俗里面的贴对联往往都是对称着贴,还有窗花也是对称的,是一个轴对称图形。
数学里的轴对称类知识。每当过年的时候,家家户户都会除陆悔旧迎新,贴上搭察火红的春联早枝正迎接新的一年的到来,在贴春联的时候,要求上下左右都是距离相等的,这里运用的就是轴对称图形的性质。
我注意到了。每年发压岁钱的时候,即使人们最开心的时候,也是小孩和大人们斗智斗勇的时候。
年俗里面藏有多种趣味的数学知识,你注意过吗?

数学趣味小知识

抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 普乔柯趣题普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 列综合算式可求出第一天卖布的米数: 1026÷(l+2+6)=1026÷9=114(米) 而114×2=228(米) 228×3=684(米) 所以三天卖的布分别是:114米、228米、684米。 请你接这种方法做一道题。 有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 鬼谷算我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 请你根据这一算法计算下面的题目。 新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢? 是要这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
1-10中任何一个的数加上9,把结果各个位上的数相加,都能得到这个数 例如3+9=12 ,1+2=39+9=18,1+8=9 1+9=10,1+0=1
sdasdasdasdasdadsdadfewrfweewrwfscec e ew w ew frweeerfdxescxqedeg ewgty43retre
555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555?是这些么?
数学趣味小知识