人教版小学六年级数学上册概念都是有哪些
你要的资料,包括很多公式,知识点,我们都整理成集,分享给你,希望对你有帮助。 《小学阶段语文、英语、数字、音乐、美术、体育、自然、科学等》百度网盘资源大全 链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ ?pwd=1234 提取码:1234 对于小学阶段所涉及到的各科各类资料,我拍改们都收集、归类并定期更新。欢迎有需求的家长、老师收藏。
人教版小学六年级数学上册概念如下: 第一单元位置: 1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。 2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。 3、平移方法:左右平移,列变行不变;上下平移,行变列不变。 第二单元分数乘法: 1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。 2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。 4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 5、乘积是1的两个数叫互为倒数。 6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 7、一个数(0除外)乘以一个真分数,所得的积小于它本身。 8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 9、一个数(0除外)乘以一个带分数,所得的积大于它本身。 第三单元分数除法: 1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。 2、分数除以整数(0除外),等于分数乘这个整数的倒数。 3、整数除以分数等于整数乘以这个分数的倒数。 4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 5、两个数相除又叫做两个数的比。 6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。 8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 11、一个数(0除外)除以一个真分数,所得的商大于它本身。 12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 13、一个数(0除外)除以一个带分数,所得的商小于它本身。 第四单元圆 1、圆的定义:平面上的一种曲线图形。 2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。 3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。 4、圆心确定圆的位置,半径确定圆的大小。 5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 6、在同一个圆内,所有的半径都相等,所有的直径都相等。 7、在同一个圆内,有无数条半径,有无数条直径。 8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。 9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。 10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。 11、圆的周长公式:C=πd或C=2πr 12、圆的面积:圆所占面积的大小叫圆的面积。 13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。 16、环形的周长=外圆周长+内圆周长。 17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d 或 C=πr+2r 18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米; 21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。 23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。 24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 26、只有2条对称轴的图形是:长方形。 27、只有3条对称轴的图形是:等边三角形。 28、只有4条对称轴的图形是:正方形。 29、有无数条对称轴的图形是:圆、圆环。 30、直径所在的直线是圆的对称轴。 第五单元百分数 1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。 3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。 5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。 6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 7、百分率公式: 合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100% 出勤率=出勤人数÷总人数100% 8、应纳税额:缴纳的税款叫应纳税额。 9、应纳税额的计算:应纳税额=各种收入×税率。 10、本金:存入银行的钱叫做本金。 11、利息:取款时银行多支付的钱叫做利息。 12、利率:利息与本金的比值叫做利率。 13、国债利息的计算公式:利息=本金×利率×时间。 13、本息:本金与利息的总和叫做本息。 单位换算: 1、长度单位换算 1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 2、面积单位换算 1平方千米=100公顷1公顷10000平方米1平方米=100平方分米 1平方分米=100平方厘米 3、体(容)积单位换算 1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米 1立方厘米=1毫升 4、重量单位换算:1吨=1000千克1千克=1000克 运算定律: 1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c) 3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c) 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc 6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c) 7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c) 扩展资料: 小学六年级数学学习方法 1、抓住课堂 平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。 2、高质量完成作业 不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。 3、勤思考,多提问 对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。 4、总结比较,理清思绪 要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。 要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。 5、有选择地做课外练习 课余时间并不充足,因此在做课外练习时要少而精,多反思
第四单元,第五单元,第一单元
单元一位置 1.找位置:先列后行。格式为:(列,行)。例如:(a,b)。2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。3.平移方法:左右平移,列变行不变;上下平移,行变列不变。 ***单元二分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。例如: ++=×3(b0)2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。例如:a×(×a)=(为了计算简便,能约分的要先约分,然后再乘。)【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。例如:×n=++、、、、、、(b0)②、整数乘以分数,可以看作是求整数的几分之几是多少。例如: n×的意义是:表示求n的是多少。4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。例如:× = (b、d0) 【注:为了计算简便,可以先约分再乘】5.乘积是1的两个数叫互为倒数。例如:×=1,那和就是互为倒数。6.求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。 0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。9.一个数(0除外)乘以一个带分数,所得的积大于它本身。10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。 ***单元三分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如:表示:已知两个数的积是与其中一个因数,求另一个因数是多少。2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。例如:÷c=×(a、c0)②整数除以分数等于整数乘以这个分数的倒数。例如:c÷=c×(a0)3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。4.两个数相除又叫做两个数的比。5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:a:b=(a是比的前项;b是比的后项;是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。例如::=÷(b、d0)8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。例如:a:b=a÷b=(b0)。9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 例如:a:b=a÷b=(b0)。10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。例如:a:b=a:b=(b0)11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。③、一个数(0除外)除以一个带分数,所得的商小于它本身。 单元四 圆1.圆的定义:平面上的一种曲线图形。例如:“O”。2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.例如:“⊙”3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。例如:“⊙”4.圆心确定圆的位置,半径确定圆的大小。5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。例如:“⊙”6.①在同一个圆内,所有的半径都相等,所有的直径都相等。②在同一个圆内,有无数条半径,有无数条直径。③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r或r=d÷27.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。9.圆的周长公式:C=πd 或C=2πr10、圆的面积:圆所占面积的大小叫圆的面积。S=π×r×r=πr²11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。(其中R=r+环的宽度.)14.环形的周长=外圆周长+内圆周长15.半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷ 2+d 或 C=πr+2r16.半圆面积=圆的面积÷2 公式为:S=πr²÷21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。18.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。21.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。22.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。②只有2条对称轴的图形是:长方形③只有3条对称轴的图形是:等边三角形④只有4条对称轴的图形是:正方形;⑤有无数条对称轴的图形是:圆、圆环。23.直径所在的直线是圆的对称轴。 单元五 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。2.百分数的意义:表示一个数是另一个数的百分之几。例如:25%的意义:表示一个数是另一个数的25%。3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。6.百分率公式:合格率= 合格人数÷总人数100%发芽率=发芽数量÷总数量100%出勤率= 出勤人数÷总人数100%7.应纳税额:缴纳的税款叫应纳税额。9.应纳税额的计算:应纳税额=各种收入×税率10.本金:存入银行的钱叫做本金。11.利息:取款时银行多支付的钱叫做利息。12.利率:利息与本金的比值叫做利率。13.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。 ***单位换算:1、长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷10000平方米 1平方米=100平方分米1平方分米=100平方厘米3、体(容)积单位换算1立方米=1000立方分米 1立方分米=1升 1立方分米=1000立方厘米1立方厘米=1毫升4、重量单位换算:1吨=1000千克1千克=1000克 ***运算定律:1.加法交换律:两数相加交换加数的位置,和不变。 a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。 a÷b÷c=a÷(b×c)
人教版小学六年级数学上册概念如下: 第一单元位置: 1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。 2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。 3、平移方法:左右平移,列变行不变;上下平移,行变列不变。 第二单元分数乘法: 1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。 2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。 4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 5、乘积是1的两个数叫互为倒数。 6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 7、一个数(0除外)乘以一个真分数,所得的积小于它本身。 8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 9、一个数(0除外)乘以一个带分数,所得的积大于它本身。 第三单元分数除法: 1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。 2、分数除以整数(0除外),等于分数乘这个整数的倒数。 3、整数除以分数等于整数乘以这个分数的倒数。 4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 5、两个数相除又叫做两个数的比。 6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。 8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 11、一个数(0除外)除以一个真分数,所得的商大于它本身。 12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 13、一个数(0除外)除以一个带分数,所得的商小于它本身。 第四单元圆 1、圆的定义:平面上的一种曲线图形。 2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。 3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。 4、圆心确定圆的位置,半径确定圆的大小。 5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 6、在同一个圆内,所有的半径都相等,所有的直径都相等。 7、在同一个圆内,有无数条半径,有无数条直径。 8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。 9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。 10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。 11、圆的周长公式:C=πd或C=2πr 12、圆的面积:圆所占面积的大小叫圆的面积。 13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。 16、环形的周长=外圆周长+内圆周长。 17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d 或 C=πr+2r 18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米; 21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。 23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。 24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 26、只有2条对称轴的图形是:长方形。 27、只有3条对称轴的图形是:等边三角形。 28、只有4条对称轴的图形是:正方形。 29、有无数条对称轴的图形是:圆、圆环。 30、直径所在的直线是圆的对称轴。 第五单元百分数 1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。 3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。 5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。 6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 7、百分率公式: 合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100% 出勤率=出勤人数÷总人数100% 8、应纳税额:缴纳的税款叫应纳税额。 9、应纳税额的计算:应纳税额=各种收入×税率。 10、本金:存入银行的钱叫做本金。 11、利息:取款时银行多支付的钱叫做利息。 12、利率:利息与本金的比值叫做利率。 13、国债利息的计算公式:利息=本金×利率×时间。 13、本息:本金与利息的总和叫做本息。 单位换算: 1、长度单位换算 1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 2、面积单位换算 1平方千米=100公顷1公顷10000平方米1平方米=100平方分米 1平方分米=100平方厘米 3、体(容)积单位换算 1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米 1立方厘米=1毫升 4、重量单位换算:1吨=1000千克1千克=1000克 运算定律: 1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c) 3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c) 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc 6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c) 7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c) 扩展资料: 小学六年级数学学习方法 1、抓住课堂 平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。 2、高质量完成作业 不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。 3、勤思考,多提问 对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。 4、总结比较,理清思绪 要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。 要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。 5、有选择地做课外练习 课余时间并不充足,因此在做课外练习时要少而精,多反思
第四单元,第五单元,第一单元
单元一位置 1.找位置:先列后行。格式为:(列,行)。例如:(a,b)。2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。3.平移方法:左右平移,列变行不变;上下平移,行变列不变。 ***单元二分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。例如: ++=×3(b0)2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。例如:a×(×a)=(为了计算简便,能约分的要先约分,然后再乘。)【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。例如:×n=++、、、、、、(b0)②、整数乘以分数,可以看作是求整数的几分之几是多少。例如: n×的意义是:表示求n的是多少。4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。例如:× = (b、d0) 【注:为了计算简便,可以先约分再乘】5.乘积是1的两个数叫互为倒数。例如:×=1,那和就是互为倒数。6.求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。 0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。9.一个数(0除外)乘以一个带分数,所得的积大于它本身。10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。 ***单元三分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如:表示:已知两个数的积是与其中一个因数,求另一个因数是多少。2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。例如:÷c=×(a、c0)②整数除以分数等于整数乘以这个分数的倒数。例如:c÷=c×(a0)3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。4.两个数相除又叫做两个数的比。5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:a:b=(a是比的前项;b是比的后项;是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。例如::=÷(b、d0)8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。例如:a:b=a÷b=(b0)。9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 例如:a:b=a÷b=(b0)。10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。例如:a:b=a:b=(b0)11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。③、一个数(0除外)除以一个带分数,所得的商小于它本身。 单元四 圆1.圆的定义:平面上的一种曲线图形。例如:“O”。2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.例如:“⊙”3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。例如:“⊙”4.圆心确定圆的位置,半径确定圆的大小。5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。例如:“⊙”6.①在同一个圆内,所有的半径都相等,所有的直径都相等。②在同一个圆内,有无数条半径,有无数条直径。③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r或r=d÷27.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。9.圆的周长公式:C=πd 或C=2πr10、圆的面积:圆所占面积的大小叫圆的面积。S=π×r×r=πr²11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或 S=π(R²-r²)。(其中R=r+环的宽度.)14.环形的周长=外圆周长+内圆周长15.半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷ 2+d 或 C=πr+2r16.半圆面积=圆的面积÷2 公式为:S=πr²÷21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。18.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。21.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。22.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。②只有2条对称轴的图形是:长方形③只有3条对称轴的图形是:等边三角形④只有4条对称轴的图形是:正方形;⑤有无数条对称轴的图形是:圆、圆环。23.直径所在的直线是圆的对称轴。 单元五 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。2.百分数的意义:表示一个数是另一个数的百分之几。例如:25%的意义:表示一个数是另一个数的25%。3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。6.百分率公式:合格率= 合格人数÷总人数100%发芽率=发芽数量÷总数量100%出勤率= 出勤人数÷总人数100%7.应纳税额:缴纳的税款叫应纳税额。9.应纳税额的计算:应纳税额=各种收入×税率10.本金:存入银行的钱叫做本金。11.利息:取款时银行多支付的钱叫做利息。12.利率:利息与本金的比值叫做利率。13.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。 ***单位换算:1、长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷10000平方米 1平方米=100平方分米1平方分米=100平方厘米3、体(容)积单位换算1立方米=1000立方分米 1立方分米=1升 1立方分米=1000立方厘米1立方厘米=1毫升4、重量单位换算:1吨=1000千克1千克=1000克 ***运算定律:1.加法交换律:两数相加交换加数的位置,和不变。 a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。 a÷b÷c=a÷(b×c)
六年级数学上册重点知识点总结
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些六年级数学的知识点,希望对大家有所帮助。 六年级毕业考试数学重难知识点:几何面积 基本思路: 在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。 常用方法: 1.连辅助线方法 2.利用等底等高的两个三角形面积相等。 3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。 4.利用特殊规律 ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积) ②梯形对角线连线后,两腰部分面积相等。 ③圆的面积占外接正方形面积的78.5%。 六年级数学知识点 1、什么是图形的周长? 围成一个图形所有边长的总和就是这个图形的周长。 2、什么是面积? 物体的表面或围成的平面图形的大小叫做他们的面积。 3、加法各部分的关系: 一个加数=和-另一个加数 4、减法各部分的关系: 减数=被减数-差 被减数=减数+差 5、乘法各部分之间的关系: 一个因数=积÷另一个因数 6、除法各部分之间的关系: 除数=被除数÷商 被除数=商×除数 7、角 (1)什么是角? 从一点引出两条射线所组成的图形叫做角。 (2)什么是角的顶点? 围成角的端点叫顶点。 (3)什么是角的边? 围成角的射线叫角的边。 (4)什么是直角? 度数为90°的角是直角。 (5)什么是平角? 角的两条边成一条直线,这样的角叫平角。 (6)什么是锐角? 小于90°的角是锐角。 (7)什么是钝角? 大于90°而小于180°的角是钝角。 (8)什么是周角? 一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°. 六年级数学下册单元知识点:统计图 (一)意义:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。 (二)分类 1、条形统计图 用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 制作条形统计图的一般步骤: (1)根据图纸的大小,画出两条互相垂直的射线。 (2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。 (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。 (4)按照数据的大小画出长短不同的直条,并注明数量。 2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 制作折线统计图的一般步骤: (1)根据图纸的大小,画出两条互相垂直的射线。 (2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。 (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。 (4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。 3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。 制扇形统计图的一般步骤: (1)先算出各部分数量占总量的百分之几。 (2)再算出表示各部分数量的扇形的圆心角度数。 (3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。 (4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。 六年级数学下册知识点:圆柱和圆锥 1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。 2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。 3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。 4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。 5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。 6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。 7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。 8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。 进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。 9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。 10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离) 11.把圆锥的侧面展开得到一个扇形。 12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。 13.常见的圆柱圆锥解决问题: ①压路机压过路面面积(求侧面积); ②压路机压过路面长度(求底面周长); ③水桶铁皮(求侧面积和一个底面积); ④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。 六年级数学上册重点知识点总结相关文章: ★六年级上册数学知识点整理归纳 ★六年级数学上册知识点总结 ★六年级数学上册知识点复习 ★六年级数学上册《百分数》知识点总结 ★六年级上册数学知识点总结 ★六年级数学期末复习知识点汇总 ★六年级上册数学课本知识点归纳 ★六年级数学上册知识点复习资料 ★人教版六年级数学的知识点总结 ★六年级上册数学知识点 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();
六年级上册数学课本是人教版还是苏教版
六年级上册数学教材不是只有一种版本,有人教版、苏教版、西师版等众多版本。虽都是教材,不过也是有些区别的。 1.教材内容。一本教材,看的就是内容,我的教材是人教版,我觉得内容很不错,例题很全面,课后习题也很丰富。不过不同教材的出版社不同,设计团队也不同,内容上多少是有些不相同的。2.插画。今年人教版的插画之所以成为众矢之的,还是因为设计者的态度和无知傲慢,中国国旗也能画错,表情怪异的小孩子们身上穿着印着外国国旗的衣服。小孩子们口歪嘴斜,做着奇怪的表情,让人看了很不舒服。不过在人教版插画出事后,有人发出了苏教版的插图,真的很好看很可爱,插画还是苏教版的不错。 感谢邀请,如有错误,请多包涵。
百度知道 六年级上册数学课本是人教版还是苏教版 2六年级上册数学教材不是只有一种版本,有人教版、苏教版、西师版等众多版本。虽都是教材,不过也是有些区别的。1.教材内容。一本教材,看的就是内容,我的教材是人教版,我觉得内容很不错,例题很全面,课后习题也很丰富。不过不同教材的出版社不同,设计团队也不同,内容上多少是有些不相同的。2.插画。今年人教版的插画之所以成为众矢之的,还是因为设计者的态度和无知傲慢,中国国旗也能画错,表情怪异的小孩子们身上穿着印着外国国旗的衣服。小孩子们口歪嘴斜,做着奇怪的表情,让人看了很不舒服。不过在人教版插画出事后,有人发出了苏教版的插图,真的很好看很可爱,插画还是苏教版的不错。
六年级上册的数学课本是人教版。
六年级上册数学课本是苏教版
重庆市六年级上册数学是人教版
百度知道 六年级上册数学课本是人教版还是苏教版 2六年级上册数学教材不是只有一种版本,有人教版、苏教版、西师版等众多版本。虽都是教材,不过也是有些区别的。1.教材内容。一本教材,看的就是内容,我的教材是人教版,我觉得内容很不错,例题很全面,课后习题也很丰富。不过不同教材的出版社不同,设计团队也不同,内容上多少是有些不相同的。2.插画。今年人教版的插画之所以成为众矢之的,还是因为设计者的态度和无知傲慢,中国国旗也能画错,表情怪异的小孩子们身上穿着印着外国国旗的衣服。小孩子们口歪嘴斜,做着奇怪的表情,让人看了很不舒服。不过在人教版插画出事后,有人发出了苏教版的插图,真的很好看很可爱,插画还是苏教版的不错。
六年级上册的数学课本是人教版。
六年级上册数学课本是苏教版
重庆市六年级上册数学是人教版
人教版六年级数学知识点上册
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些六年级数学的知识点,希望对大家有所帮助。 人教版小学六年级上册数学知识点 第一单元:分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 “分数乘整数”指的是第二个因数必须是整数,不能是分数。 2、一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。 (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。 (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c 一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。 (四)分数乘法混合运算 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c (五)倒数的意义:乘积为1的两个数互为倒数。 1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数) 2、判断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。 3、求倒数的方法: ①求分数的倒数:交换分子、分母的位置。 ②求整数的倒数:整数分之1。 ③求带分数的倒数:先化成假分数,再求倒数。 ④求小数的倒数:先化成分数再求倒数。 4、1的倒数是它本身,因为1×1=1 0没有倒数,因为任何数乘0积都是0,且0不能作分母。 5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。 假分数的倒数小于或等于1。带分数的倒数小于1。 (六)分数乘法应用题——用分数乘法解决问题 1、求一个数的几分之几是多少?(用乘法) 已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。 2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。 3、什么是速度? 速度是单位时间内行驶的路程。 速度=路程÷时间 时间=路程÷速度 路程=速度×时间 单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。 4、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙 少:(乙-甲)÷乙 六年级上册数学知识点 1.根据方向和距离可以确定物体在平面图上的位置。 2.在平面图上标出物体位置的方法: 先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。 3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。 4.绘制路线图的方法: (1)确定方向标和单位长度。 (2)确定起点的位置。 (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。 (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。 小学六年级数学学习方法 1、利用生活中的数学体现,激发孩子内在的学习动机 数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。 2、抓住数学敏感期,循序渐进,发展数学思维 研究证明,儿童在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。 而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。 3、讨论合作,共同发散数学思维 每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行折纸游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、发散思维的同时建构自己的经验和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。 孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于抽象思维的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时总结分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。 人教版六年级数学知识点上册相关文章: ★六年级数学上册知识点复习 ★六年级上册数学人教版知识点 ★六年级上册数学知识点整理归纳 ★六年级数学上册《百分数》知识点总结 ★六年级数学上册知识人教版 ★六年级数学上册知识点总结 ★六年级数学上册知识点复习资料 ★六年级上册数学课本知识点归纳 ★六年级数学期末复习知识点汇总 ★六年级上册数学知识点
六年级数学单元知识点
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些六年级数学的知识点,希望对大家有所帮助。 六年级毕业考试数学重难知识点:不定方程 一次不定方程: 含有两个未知数的一个方程,叫做二元一次方程,由于它的解不,所以也叫做二元一次不定方程; 常规方法: 观察法、试验法、枚举法; 多元不定方程: 含有三个未知数的方程叫三元一次方程,它的解也不 多元不定方程解法: 根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可 涉及知识点: 列方程、数的整除、大小比较 解不定方程的步骤: 1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案 技巧总结: A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数 B、消元技巧:消掉范围大的未知数。 六年级数学考试知识点 (一)笔算两位数加法,要记三条 1、相同数位对齐; 2、从个位加起; 3、个位满10向十位进1。 (二)笔算两位数减法,要记三条 1、相同数位对齐; 2、从个位减起; 3、个位不够减从十位退1,在个位加10再减。 (三)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。 (四)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个"零"; 3、末位不管有几个0都不读。 (五)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写"0"。 (六)4位数减法也要注意三条 1、相同数位对齐; 2、从个位减起; 3、哪一位数不够减,从前位退1,在本位加10再减。 小学六年级数学 学习方法 一、抓住课堂 数学学习重在平日工夫,不适于突击复习。平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要阐明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而重视题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。 二、高质量完成作业 所谓高质量是指高精确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和精确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精力,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机遇。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深入的印象。 三、勤思考,多提问 首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的道路。其次,学习任何学科都应抱着猜忌的态度,尤其是数学。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是肃清学习隐患的道路。 四、总结比较,理清思绪 (1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整顿出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区离开。 (2)题目的总结比较。同学可以建立自己的题库。一本是错题,一本是精题。对于平时作业,考试涌现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。还把见到的一些极其奇妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的辅助。 六年级数学单元知识点相关文章: ★六年级上册数学知识点整理归纳 ★六年级数学期末复习知识点汇总 ★六年级数学上册知识点复习 ★六年级数学复习要点 ★六年级数学上册知识点人教版 ★六年级数学上册知识点总结 ★六年级上册数学课本知识点归纳 ★六年级上册数学知识点 ★六年级数学上册知识点复习资料 ★人教版六年级数学的知识点总结