初一到初三数学知识点总结归纳
2020年的中考就要到了,同学们可以利用这个寒假系统的复习一下初中数学的重要知识点,接下来给大家分享初一到初三数学知识点,供参考。 数轴 1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 数轴的三要素:原点,单位长度,正方向。 2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。) 3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 概率 1.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 2.互斥事件:不可能同时发生的两个事件叫做互斥事件。 3.对立事件:即必有一个发生的互斥事件叫做对立事件。 4.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。 5.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。 解一元二次方程的步骤 1.配方法的步骤: 先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。 2.分解因式法的步骤: 把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。 3.公式法 就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。 平行线 1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.判定两条直线平行的方法: (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.平行线的性质 (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。 全等三角形 1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。 2.三角形全等的判定 (1)SSS(边边边) 三边对应相等的三角形是全等三角形。 (2)SAS(边角边) 两边及其夹角对应相等的三角形是全等三角形。 (3)ASA(角边角) 两角及其夹边对应相等的三角形全等。 (4)AAS(角角边) 两角及其一角的对边对应相等的三角形全等。 (5)RHS(直角、斜边、边) 在一对直角三角形中,斜边及另一条直角边相等。 3.角平分线 (1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。 (2)性质 ①角平分线分得的两个角相等,都等于该角的一半。 ②角平分线上的点到角的两边的距离相等。 有理数 1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 5.有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 6.有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0.例:0×1=0 7.有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 8.有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

初一到初三数学知识点 高频考点总结
学习数学总结知识点是非常重要的一个环节,下面我为大家总结了初一到初三 数学知识点 ,仅供大家参考。 整式的除法知识点(1)单项式乘单项式的结果仍然是单项式。 (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提取公因式。 (2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式 (3)分解因式必须分解到每一个因式都不能再分解为止。初中数学不等式知识点不等式的解集 对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 求不等式的解集的过程,叫做解不等式。 不等式基本性质 ⑴、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 ⑵、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 ⑶、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。一元二次方程的解法①、直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。 ②、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。 ③、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程的求根公式: ④、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 以上就是我为大家总结的初一到初三 数学 知识点,仅供参考,希望对大家有帮助。

初一到初三重要数学知识点总结
这篇文章我给大家整理了重要的初中数学知识点,希望可以帮助同学们系统的复习初中数学知识,一起看一下具体内容,供参考。 不等式 (一)基本性质 1.掌握不等式的基本性质,并会灵活运用: (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。 (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。 (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么acb,那么a-b是正数;反过来,如果a-b是正数,那么a>b; 如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b; 如果ab<===>a-b>0 a=b<===>a-b=0 aa-b<0 (二)不等式的解集: 1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。 2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同 3.不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左。 数学三角函数的中考考点 1.正弦定理 在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。 一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。 2.余弦定理 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。 对于边长为a、b、c而相应角为A、B、C的三角形则有: ①a²=b²+c²-2bc·cosA; ②b²=a²+c²-2ac·cosB; ③c²=a²+b²-2ab·cosC。 也可表示为: ①cosC=(a²+b²-c²)/2ab; ②cosB=(a²+c²-b²)/2ac; ③cosA=(c²+b²-a²)/2bc。 3.正切定理 在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。 对于边长为a,b和c而相应角为A,B和C的三角形,有: ①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2]; ②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2]; ③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。 二次函数一般式及图像关系 二次函数的一般式为:y=ax²+bx+c(a≠0)。 a、b、c值与图像关系 a>0时,抛物线开口向上;a<0时,抛物线开口向下。 当抛物线对称轴在y轴左侧时a,b同号,当抛物线对称轴在y轴右侧时a,b异号。 c>0时,抛物线与y轴交点在x轴上方;c<0时,抛物线与y轴交点在x轴下方。 a=0时,此图像为一次函数。 b=0时,抛物线顶点在y轴上。 c=0时,抛物线在x轴上。 当抛物线对称轴在y轴左侧时a,b同号,当抛物线对称轴在y轴右侧时a,b异号。 一元一次方程的解法 1.一般方法: ①去分母:去分母是指等式两边同时乘以分母的最小公倍数。 ②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。 ③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 ④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。 ⑤系数化为1。 2.图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。 3.求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。 圆的知识点 1.圆的对称性 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2.垂径定理 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5.夹在平行线间的两条弧相等。 (1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。) 6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。 因式分解的方法 1.十字相乘法 (1)把二次项系数和常数项分别分解因数; (2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数; (3)确定合适的十字图并写出因式分解的结果; (4)检验。 2.提公因式法 (1)找出公因式; (2)提公因式并确定另一个因式; ①找公因式可按照确定公因式的方法先确定系数再确定字母; ②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 3.待定系数法 (1)确定所求问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。

初一到初三数学重点知识点总结
很多同学都需要整理数学知识点,我整理了一些初中数学重点知识,大家一起来看看吧。 数学三角函数的中考考点 1.正弦定理 在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。 一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。 2.余弦定理 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。 对于边长为a、b、c而相应角为A、B、C的三角形则有: ①a²=b²+c²-2bc·cosA; ②b²=a²+c²-2ac·cosB; ③c²=a²+b²-2ab·cosC。 也可表示为: ①cosC=(a²+b²-c²)/2ab; ②cosB=(a²+c²-b²)/2ac; ③cosA=(c²+b²-a²)/2bc。 3.正切定理 在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。 对于边长为a,b和c而相应角为A,B和C的三角形,有: ①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2]; ②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2]; ③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。 基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1直角三角形的两个锐角互余 19、推论2三角形的一个外角等于和它不相邻的两个内角的和 20、推论3三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS)有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1在角的平分线上的点到这个角的两边的距离相等 28、定理2到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1三个角都相等的三角形是等边三角形 36、推论2有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1关于某条直线对称的两个图形是全等形 43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 一次函数的图像及性质 1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。 3.正比例函数的图像总是过原点。 4.k,b与函数图像所在象限的关系: 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。 当k>0,b>0时,直线通过一、二、三象限; 当k>0,b<0时,直线通过一、三、四象限; 当k<0,b>0时,直线通过一、二、四象限; 当k<0,b<0时,直线通过二、三、四象限; 当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 以上就是一些数学知识点的相关信息,希望对大家有所帮助。

初一到初三数学知识点重点总结
学习数学的时候总结知识点是非常重要的一个环节,下面总结了初一到初三的重点知识点,供大家参考。 1.数轴 (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 数轴的三要素:原点,单位长度,正方向。 (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。) (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 2.相反数 (1)相反数的概念:只有符号不同的两个数叫做互为相反数。 (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。 (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 3.绝对值 (1)概念:数轴上某个数与原点的距离叫做这个数的绝对值。 ①互为相反数的两个数绝对值相等; ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。 ③有理数的绝对值都是非负数。 (2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定: ①当a是正有理数时,a的绝对值是它本身a; ②当a是负有理数时,a的绝对值是它的相反数﹣a; ③当a是零时,a的绝对值是零。 即|a|={a(a>0)0(a=0)﹣a(a<0) 4.有理数的加法运算 同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。 “大”减“小”是指绝对值的大小。 5.有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则。 同号得正异号负,一项为零积是零。 6.有理数混合运算的四种运算技巧 转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。 凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。 分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。 巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。 7.解一元一次方程的一般步骤 (1)去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。 (2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。 (3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。 8.角的概念 (1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。 (2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。 (3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。 (4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。 9.平方根 ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 10.立方根 ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 11.整式的乘法 ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。 ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 12.轴对称的性质 ①轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形。②轴对称(轴对称图形)对应线段相等,对应角相等。 ③如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ④轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。 ⑤两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上。 13.相似三角形知识点 考点:相似三角形的概念、相似比的意义、画图形的放大和缩小。 考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。 考点:平行线分线段成比例定理、三角形一边的平行线的有关定理。 考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。 注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。 考点:相似三角形的概念 考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
