九年级数学知识点归纳
各个科目都有自己的学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些九年级数学知识点的学习资料,希望对大家有所帮助。 初三下册数学知识点总结 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 九年级下册数学知识点 知识点1.概念 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到. (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关. 知识点2.比例线段 对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 知识点3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 解读:(1)正确理解相似多边形的定义,明确“对应”关系. (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性. 知识点4.相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比. 知识点5.相似三角的判定方法 (1)定义:对应角相等,对应边成比例的两个三角形相似; (2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似. (3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. (4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. (5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似. (6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 知识点6.相似三角形的性质 (1)对应角相等,对应边的比相等; (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比; (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方. (4)射影定理 苏教版九年级上册数学知识点归纳 1二次根式:形如式子为二次根式; 性质:是一个非负数; 2二次根式的乘除: 3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并. 4海伦-秦九韶公式:,S是的面积,p为. 1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程. 2配方法:将方程的一边配成完全平方式,然后两边开方; 因式分解法:左边是两个因式的乘积,右边为零. 3一元二次方程在实际问题中的应用 4韦达定理:设是方程的两个根,那么有 1:一个图形绕某一点转动一个角度的图形变换 性质:对应点到中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等. 2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 九年级数学知识点归纳相关文章: ★初三数学知识点归纳总结 ★九年级上册数学知识点归纳整理 ★初三数学知识点考点归纳总结 ★初三数学知识点归纳人教版 ★九年级数学上册重要知识点总结 ★九年级上册数学知识点归纳 ★初中九年级数学知识点总结归纳 ★初三数学中考复习重点章节知识点归纳 ★初三数学知识点整理

初三上册数学知识点总结
读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。 初三上册数学知识点1 特殊平行四边形 1、菱形的性质与判定 ①菱形的定义: 一组邻边相等的平行四边形叫做菱形。 ②菱形的性质: 具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ③菱形的判别方法: 一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 2、矩形的性质与判定 ①矩形的定义: 有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ②矩形的性质: 具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ③矩形的判定: 有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 ④推论:直角三角形斜边上的中线等于斜边的一半。 3、正方形的性质与判定 ①正方形的定义: 一组邻边相等的矩形叫做正方形。 ②正方形的性质: 正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ③正方形常用的判定: 有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。 ④正方形、矩形、菱形和平行边形四者之间的关系 ⑤梯形定义: 一组对边平行且另一组对边不平行的四边形叫做梯形。 两条腰相等的梯形叫做等腰梯形。 一条腰和底垂直的梯形叫做直角梯形。 ⑥等腰梯形的性质: 等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。 三角形的中位线平行于第三边,并且等于第三边的一半。 夹在两条平行线间的平行线段相等。 在直角三角形中,斜边上的中线等于斜边的一半 初三上册数学知识点2 一元二次方程 1、认识一元二次方程 只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0 (a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。 把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。 2、用配方法求解一元二次方程 ①配方法 <即将其变为(x+m)2=0的形式> 配方法解一元二次方程的基本步骤: 把方程化成一元二次方程的一般形式; 将二次项系数化成1; 把常数项移到方程的右边; 两边加上一次项系数的一半的平方; 把方程转化成的形式; 两边开方求其根。 3、用公式法求解一元二次方程 ②公式法 (注意在找abc时须先把方程化为一般形式) 4、用因式分解法求解一元二次方程 ③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”) 5、一元二次方程的根与系数的关系 ①根与系数的关系: 当b2-4ac>0时,方程有两个不等的实数根; 当b2-4ac=0时,方程有两个相等的实数根; 当b2-4ac<0时,方程无实数根。 ②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有: ③一元二次方程的根与系数的关系的作用: 已知方程的一根,求另一根; 不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式: 已知方程的两根x1、x2,可以构造一元二次方程: x2-(x1+x2)x+x1x2=0 已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根 6、应用一元二次方程 ①在利用方程来解应用题时,主要分为两个步骤: 设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑); 寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。 ②处理问题的过程可以进一步概括为 初三上册数学知识点3 图形的相似 1、成比例线段 ①线段的比 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即 那么这四条线段a、b、c、d叫做成比例线段,简称比例线段. ②注意点: a:b=k,说明a是b的k倍 由于线段 a、b的长度都是正数,所以k是正数 比与所选线段的长度单位无关,求出时两条线段的长度单位要一致 除了a=b之外,a:b≠b:a 比例的基本性质:若 则ad=bc; 若ad=bc, 则 2、平行线分线段成比例 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则 3. 黄金分割 如图1,点C把线段AB分成两条线段AC和BC,如果 那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. 黄金分割点是最优美、最令人赏心悦目的点. 4.相似多边形 ① 含义: 一般地,形状相同的图形称为相似图形. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. ②注意点: 在相似多边形中,最为简单的就是相似三角形. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 相似三角形周长的比等于相似比. 相似三角形面积的比等于相似比的平方. 相似多边形的周长等于相似比;面积比等于相似比的平方. 5、探索三角形相似的条件 ①相似三角形的判定方法: ②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 ③相似三角形的判定定理的证明 ④利用相似三角形测高 ⑤相似三角形的性质 ⑥图形的位似 初三上册数学知识点总结相关文章: ★九年级数学上册重要知识点总结 ★初三数学知识点考点归纳总结 ★九年级上册数学知识点归纳整理 ★初三数学知识点归纳总结 ★初三数学知识点总结 ★初三上册数学知识点盘点与数学学习方法 ★初三数学重要公式知识大全 ★初三九年级上册数学知识点 ★初中数学必备知识点总结初三数学上册一二章知识点 ★人教版九年级数学知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();

九年级数学知识点总结
各个科目都有自己的学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些九年级数学的知识点,希望对大家有所帮助。 初三数学上册知识点归纳 1.数的分类及概念数系表: 说明:分类的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: ①定义及表示法 ②性质:A.a1/a(a1);B.1/a中,aC.0 4.相反数: ①定义及表示法 ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴: ①定义(三要素) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.绝对值: ①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│0,符号││是非负数的标志; ③数a的绝对值只有一个; ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。 九年级下册数学知识点归纳 一、平行线分线段成比例定理及其推论: 1.定理:三条平行线截两条直线,所得的对应线段成比例。 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。 二、相似预备定理: 平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。 三、相似三角形: 1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。 2.性质:(1)相似三角形的对应角相等; (2)相似三角形的对应线段(边、高、中线、角平分线)成比例; (3)相似三角形的周长比等于相似比,面积比等于相似比的平方。 说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。 3.判定定理: (1)两角对应相等,两三角形相似; (2)两边对应成比例,且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似; (4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。 九年级下册数学知识点 圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆内容提要☆ 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 6.与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.切线的性质(重点) 2.切线的判定定理(重点) 3.切线长定理 九年级数学知识点总结相关文章: ★九年级数学上册重要知识点总结 ★初三数学知识点考点归纳总结 ★人教版九年级数学知识点归纳 ★初三数学知识点归纳总结 ★九年级上册数学知识点归纳整理 ★最新初三数学知识点总结大全 ★初三数学知识点归纳人教版 ★初中九年级数学知识点总结归纳 ★初三数学知识点整理 ★初三数学复习知识点总结

初三上数学知识点归纳汇总
这篇文章我给大家归纳汇总了初三上册数学的重要知识点,一起看一下具体内容,供参考。 函数 1.反比例函数的性质 (1)反比例函数y=xk(k≠0)的图象是双曲线; (2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小; (3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大. 注意:反比例函数的图象与坐标轴没有交点. 2.画二次函数的图像 (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像 (2)理解二次函数的图像,体会数形结合思想; (3)会画二次函数的大致图像。 3.一次函数 变量:因变量,自变量。 ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。 ②当B=0时,称Y是X的正比例函数。 一次函数的图像: ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数Y=KX的图象是经过原点的一条直线。 ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。 ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。 垂直平分线 1.经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 2.垂直平分线的性质 (1)垂直平分线垂直且平分其所在线段。 (2)垂直平分线上任意一点,到线段两端点的距离相等。 (3)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 (4)线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 (5)三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相等。(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。) 3.垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 不等式的判定 1.常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于; 2.在不等式“a>b”或“a

九年级上册数学知识点归纳
第21章 二次根式 学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。 在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论: 注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到 并运用它们进行二次根式的化简。 二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。 第22章 一元二次方程 学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。 本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念, 22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。 (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。 (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。 (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。 22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。 第23章 旋转 学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。 23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。 23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的.点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。 23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。 第24章 圆 圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。 24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。 24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。 24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。 24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。 第25 章 概率初步 将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。 25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。 25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。 25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。 25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。
