关于初中数学知识点总结归纳
数学已成为许多国家及地区的教育范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了初中数学知识点总结归纳,供大家阅读参考。 初中数学知识点总结归纳 一: 数轴 11 有向直线 在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相 规定了正方向的直线,叫做有向直线,读作有向直线l 12 数轴 我们把数轴上任意一点所对应的实数称为点的坐标 对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化 数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值 二:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 三:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。 四:点的坐标的性质 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。 五:因式分解的一般步骤 关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。 因式分解的一般步骤 如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式, 通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。 注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。 相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。 六:因式分解 下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。 因式分解 因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④ 因式分解与整式乘法的关系:m(a+b+c) 公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 提取公因式步骤: ①确定公因式。②确定商式③公因式与商式写成积的形式。 分解因式注意; ①不准丢字母 ②不准丢常数项注意查项数 ③双重括号化成单括号 ④结果按数单字母单项式多项式顺序排列 ⑤相同因式写成幂的形式 ⑥首项负号放括号外 ⑦括号内同类项合并。 初中数学知识点 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数< 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时:(-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。 关于初中数学的知识点 一、平移变换: 1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。 2。性质:(1)平移前后图形全等; (2)对应点连线平行或在同一直线上且相等。 3。平移的作图步骤和方法: (1)分清题目要求,确定平移的方向和平移的距离; (2)分析所作的图形,找出构成图形的关健点; (3)沿一定的方向,按一定的距离平移各个关健点; (4)连接所作的各个关键点,并标上相应的字母; (5)写出结论。 二、旋转变换: 1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。 说明: (1)图形的旋转是由旋转中心和旋转的角度所决定的; (2)旋转过程中旋转中心始终保持不动。 (3)旋转过程中旋转的方向是相同的。 (4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。 2。性质: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等。 3。旋转作图的步骤和方法: (1)确定旋转中心及旋转方向、旋转角; (2)找出图形的关键点; (3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点; (4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。 说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。 常见考法 (1)把平移旋转结合起来证明三角形全等; (2)利用平移变换与旋转变换的性质,设计一些题目。 误区提醒 (1)弄反了坐标平移的上加下减,左减右加的规律; (2)平移与旋转的性质没有掌握。 学好数学的方法 1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好! 2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到笔记本上!保持高效率! 3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学! 4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精! 5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!! 总之,学习数学,不要怕难,不要怕累,不要怕问! 初中数学知识点总结归纳相关文章: ★初中数学基础知识整理归纳 ★初中数学知识点总结 ★初中数学重点知识点的归纳总结 ★初中数学知识点归纳有哪些 ★初中数学知识点总结归纳 ★初中部数学学习方法总结 ★初中数学圆的知识点归纳 ★初一数学学习方法总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?8a6b92a28ca051cd1a9f6beca8dce12e"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();
初中数学重要知识点总结
初中生在学习数学的过程中应该注意知识点的总结,下面总结了初中数学重点知识点,供大家参考。 因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 全等三角形 (一)经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。 (二)全等三角形的性质 1.全等三角形的对应角相等。 2.全等三角形的对应边相等。 3.能够完全重合的顶点叫对应顶点。 4.全等三角形的对应边上的高对应相等。 5.全等三角形的对应角的角平分线相等。 6.全等三角形的对应边上的中线相等。 7.全等三角形面积和周长相等。 8.全等三角形的对应角的三角函数值相等。 (三)全等三角形的判定 (1)SSS(边边边) 三边对应相等的三角形是全等三角形。 (2)SAS(边角边) 两边及其夹角对应相等的三角形是全等三角形。 (3)ASA(角边角) 两角及其夹边对应相等的三角形全等。 (4)AAS(角角边) 两角及其一角的对边对应相等的三角形全等。 (5)RHS(直角、斜边、边) 在一对直角三角形中,斜边及另一条直角边相等。 角相关定理公式 1、同位角相等,两直线平行。 2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。 4、两直线平行,同位角相等。 5、两直线平行,内错角相等。 6、两直线平行,同旁内角互补。 7、定理1在角的平分线上的点到这个角的两边的距离相等。 8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。 9、角的平分线是到角的两边距离相等的所有点的集合。 二元一次方程 含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 不等式与不等式组 (1)不等式 用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。 (2)不等式的性质 ①对称性; ②传递性; ③加法单调性,即同向不等式可加性; ④乘法单调性; ⑤同向正值不等式可乘性; ⑥正值不等式可乘方; ⑦正值不等式可开方; (3)一元一次不等式 用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。 (4)一元一次不等式组 一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。 代数 1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式) 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
初中数学知识点之基础知识点总结
初中数学知识点之基础知识点总结 在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。想要一份整理好的知识点吗?下面是我帮大家整理的初中数学知识点之基础知识点总结,欢迎大家分享。 初中数学知识点之基础知识点总结1 一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数 数轴: ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值: ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。 有理数的运算:加法: ①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数无理数:无限不循环小数叫无理数 平方根: ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数: ①实数分有理数和无理数。 ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。 ③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项: ①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。 ②把同类项合并成一项就叫做合并同类项。 ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式: ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。 ②一个单项式中,所有字母的指数和叫做这个单项式的次数。 ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN除法一样。 整式的乘法: ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。 ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法: ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。 方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式: ①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。 ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 初中数学知识点:直线的位置与常数的关系 ①k>0则直线的倾斜角为锐角 ②k<0则直线的倾斜角为钝角 ③图像越陡,|k|越大 ④b>0直线与y轴的`交点在x轴的上方 ⑤b<0直线与y轴的交点在x轴的下方 初中数学知识点之基础知识点总结2 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。 2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。 3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。 4.列一元一次方程解应用题: (1)读题分析法:多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。 (2)画图分析法:多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。 11.列方程解应用题的常用公式: (1)行程问题:距离=速度·时间; (2)工程问题:工作量=工效·工时; (3)比率问题:部分=全体·比率; (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度; (5)商品价格问题:售价=定价·折·,利润=售价—成本,; (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a, S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。 本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。 初中数学知识点之基础知识点总结3 二元二次方程与二元二次方程组以及解法要领的孩子试点已经为大家讲完,接下来给大家带来的知识点内容是数轴,希望同学们了解有向直线和数轴的知识要领了。 数轴 11有向直线 在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相 规定了正方向的直线,叫做有向直线,读作有向直线l 12数轴 我们把数轴上任意一点所对应的实数称为点的坐标 对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化 数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值 上面的内容是初中数学知识点之数轴,相信同学们看过以后都可以很好的掌握了吧。如果想要了解更多更全的初中数学知识就来关注吧。 初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。 初中数学知识点:点的坐标的性质 下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。 初中数学知识点:因式分解的一般步骤 关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。 因式分解的一般步骤 如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式, 通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。 注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。 相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。 初中数学知识点:因式分解 下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。 因式分解 因式分解定义: 把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 因式分解要素: ①结果必须是整式②结果必须是积的形式③结果是等式④ 因式分解与整式乘法的关系:m(a+b+c) 公因式: 一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 公因式确定方法: ①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 提取公因式步骤: ①确定公因式。②确定商式③公因式与商式写成积的形式。 分解因式注意; ①不准丢字母 ②不准丢常数项注意查项数 ③双重括号化成单括号 ④结果按数单字母单项式多项式顺序排列 ⑤相同因式写成幂的形式 ⑥首项负号放括号外 ⑦括号内同类项合并。 通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。 ;
初中数学知识点总结大全 重点都在这了
初中生学习数学要特别注意知识点的总结,下面我为大家总结了初中 数学知识点 ,仅供大家参考。 数学基础知识点平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。初中数学重点知识点平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。 垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。 垂直平分线:垂直和平分一条线段的直线叫垂直平分线。 垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。 垂直平分线定理 性质定理:在垂直平分线上的点到该线段两端点的距离相等; 判定定理:到线段2端点距离相等的点在这线段的垂直平分线上 角平分线:把一个角平分的射线叫该角的角平分线。数学基本定理1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 以上就是我为大家总结的 初中数学 知识点总结大全,仅供参考,希望对大家有所帮助。
初中数学知识点总结
初中数学知识 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质: ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性. ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: ⑴边边边():三边对应相等的两个三角形全等. ⑵边角边():两边和它们的夹角对应相等的两个三角形全等. ⑶角边角():两角和它们的夹边对应相等的两个三角形全等. ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等. 4.角平分线: ⑴画法: ⑵性质定理:角平分线上的点到角的两边的距离相等. ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法: ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程. 初中数学必备知识 1.基本概念: ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形. ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称. ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线. ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角. ⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质: ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质: ①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的'点的坐标性质 初中数学重点知识 一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子: a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。